Home
Class 11
MATHS
If (frac(cos^4 B)(cos^2 A))+(frac(sin^4 ...

If `(frac(cos^4 B)(cos^2 A))+(frac(sin^4 B)(sin^2 A))=1` then show that, `(frac(cos^4 A)(cos^2 B))+(frac(sin^4 B)(sin^2 A))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: (frac(sin3x)(cosx))+(frac(cos3x)(sinx))=2cot2x

In /_\ABC , show that bcos^2(frac{C}{2})+c cos^2(frac{B}{2}) = s

1-(frac(sin^2 theta)(1+cos theta))+(frac(1+cos theta)(sintheta))-(frac(sin theta)(1-cos theta)) equals…..

If x sin(a+y) + sin a cos(a+y) then show that dy/dx = frac{ sin^2 (a+y)}{sin a}

Find the value of frac(cos56^@)(sin34^@)

Prove the following: (frac(cotAcot4A+1) (cotAcot4A-1)) = (frac(cos3A) (cos5A))

Prove the following: (frac(sin(A-B))(cosAcosB))+(frac(sin(B-C))(cosBcosC))+(frac(sin(C-A))(cosCcosA))=0

Prove the following: (frac(cos9x-cos5x)(sin17x-sin3x))=(frac(-sin2x)(cos10x))

If sin^-1(frac{4}{5})+cos^-1(frac{12}{13}) = sin^-1alpha , then alpha =