Home
Class 11
MATHS
Prove that(1tanx)^2+(1-cotx)^2=(secx-cos...

Prove that`(1tanx)^2+(1-cotx)^2=(secx-cosecx)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1+tantheta)^(2)+(1+cottheta)^(2)=(sectheta+"cosec "theta)^(2) .

2tan^(-1)(cosx)=tan^(-1)(2cosecx)

Prove that sqrt((1+sinx)/(1-sinx))=secx+tanx

Prove that (cosecx-sinx)(secx-cosx)(tanx+cotx)=1

int((1+tanx)/(1-tanx))dx

int(1)/(tanx+cotx)dx=

int((1+tan)/(1-tanx))^(2)dx=

Prove that sqrt(frac(cosecx-1)(cosecx+1))=(frac(1)(secx+tanx))

Prove that (frac(1-tantheta)(1-cottheta))^2=tan^2 theta

Prove the following: tanx+cotx=2cosec2x