Home
Class 11
MATHS
Prove the following:cos(x+y)cos(x-y)=cos...

Prove the following:`cos(x+y)cos(x-y)=cos^2y-sin^2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: cos(pi/2-x)cos(pi/2-y)-sin(pi/2-x)sin(pi/2-y)=-cos(x+y)

Prove the following: cos(pi/4-x).cos(pi/4-y)-sin(pi/4-x).sin(pi/4-y)=sin(x+y)

Prove the following: (cosx+cosy)^2+(sinx-siny)^2=4cos^2(frac(x+y)(2))

Prove the following: cos^2 2x-cos^2 6x=sin4xsin8x

Prove the following: cos^2x+cos^2(x+120^@)+cos^2(x-120^@)=3/2

Prove the following: (frac(cos(x-y))(cos(x+y)))=(frac(cotxcoty+1)(cotxcoty-1))

Prove the following: (frac(cos(pi+x)cos(pi-x))(sin(pi-x)cos(pi/2+x)))=cot^2x

Prove the following: (frac(cos9x-cos5x)(sin17x-sin3x))=(frac(-sin2x)(cos10x))

Prove the following: (frac(sin2x+sin2y)(sin2x-sin2y))=(frac(tan(x+y))(tan(x-y)))

Prove the following: (frac(sinx-sin3x+sin5x-sin7x)(cosx-cos3x-cos5x+cos7x))=cot2x