Home
Class 11
MATHS
Prove the following:cos(3pi/2+x)cos(2pi+...

Prove the following:`cos(3pi/2+x)cos(2pi+x)[cot(3pi/2-x)+cot(2pi+x)]=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: 4cosxcos(pi/3+x)cos(pi/3-x)=cos3x

Prove the following: cos(pi/4+x)+cos(pi/4-x)=sqrt2cosx

Prove the following: (frac(cos(pi+x)cos(pi-x))(sin(pi-x)cos(pi/2+x)))=cot^2x

Prove the following: cos(pi/2-x)cos(pi/2-y)-sin(pi/2-x)sin(pi/2-y)=-cos(x+y)

Prove the following: cos(pi/4-x).cos(pi/4-y)-sin(pi/4-x).sin(pi/4-y)=sin(x+y)

Prove the following: (frac(sin^3(pi+x)sec^2(pi-x)tan(2pi-x))(cos^2(pi/2+x)sin(pi-x)cosec^2(-x)))=tan^3x

Prove the following: (1+cos (pi/8))(1+cos((3pi)/8))(1+cos ((5pi)/8))(1+cos ((7pi)/8))=1/8

Using tables evaluate the following (frac(cot (pi/4) cot (pi/3)+1)(cot (pi/4)-cot (pi/3)))

Prove the following: (frac(sin3x)(cosx))+(frac(cos3x)(sinx))=2cot2x

cos((3pi)/4+x)-cos((3pi)/4-x)=