Home
Class 11
MATHS
Prove that sin^2(pi/8)+sin^2(3pi/8)+sin^...

Prove that `sin^2(pi/8)+sin^2(3pi/8)+sin^2(5pi/8)+sin^2(7pi/8)=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^2(pi/4-x)+sin^2(pi/4+x)=1

The value of sin^2 (pi/8)+sin^2 ((3pi)/8)+sin^2 ((5pi)/8)+sin^2 ((7pi)/8) is

sin^4\ pi/8 + sin^4\ (3pi)/8 + sin^4\ (5pi)/8 + sin^4\ (7pi)/8=

sin(pi/10)sin((3pi)/10)=

Solve the following:Show that sin^2(pi/10)+sin^2((4pi)/10)+sin^2 ((6pi)/10)+sin^2 ((9pi)/10)=2

sin^4(pi/8)+sin^4((2pi)/8)+sin^4((3pi)/8)+sin^4((4pi)/8)+sin^4((5pi)/8)+sin^4((6pi)/8)+sin^4((7pi)/8)=

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14)sin((7pi)/14)sin((9pi)/14)sin((11pi)/14)sin((13pi)/14) is

The value of sin ""(pi)/(16) sin ""(3pi)/(16) sin ""(5pi)/(16) sin ""(7pi)/(16) is