Home
Class 11
MATHS
Prove the following: (frac(cosx+sinx)(co...

Prove the following:` (frac(cosx+sinx)(cosx-sinx))-(frac(cosx-sinx)(cosx+sinx))=2tan2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: (frac(sin3x)(cosx))+(frac(cos3x)(sinx))=2cot2x

Prove the following: (frac(cosx)(1+sinx))=(frac(cot(x/2)-1)(cot(x/2)+1))

Prove the following: (frac(sin5x-2sin3x+sinx)(cos5x-cosx))=tanx

Prove the following: (frac(sinx-sin3x+sin5x-sin7x)(cosx-cos3x-cos5x+cos7x))=cot2x

Prove the following: (frac(2cos4x+1)(2cosx+1))=(2cosx-1)(2cos2x-1)

Prove the following: (sin3x+sinx)sinx+(cos3x-cosx)cosx=0

Prove the following: (cosx-cosy)^2+(sinx-siny)^2=4sin^2(frac(x-y)(2))

Prove the following: tan^-1[frac{cosx+sinx}{cosx-sinx}] = frac{pi}{4} + x

Solve: tan^(-1)((cosx-sinx)/(cosx+sinx))