Home
Class 11
MATHS
Prove the following:(frac(sin3x)(cosx))+...

Prove the following:`(frac(sin3x)(cosx))+(frac(cos3x)(sinx))=2cot2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: (frac(cosx+sinx)(cosx-sinx))-(frac(cosx-sinx)(cosx+sinx))=2tan2x

Prove the following: (frac(cosx)(1+sinx))=(frac(cot(x/2)-1)(cot(x/2)+1))

Prove the following: (frac(cos(x-y))(cos(x+y)))=(frac(cotxcoty+1)(cotxcoty-1))

Prove the following: (frac(2cos4x+1)(2cosx+1))=(2cosx-1)(2cos2x-1)

Prove the following: (frac(sin5x-2sin3x+sinx)(cos5x-cosx))=tanx

Prove the following: (sin3x+sinx)sinx+(cos3x-cosx)cosx=0

Prove the following: (frac(cos9x-cos5x)(sin17x-sin3x))=(frac(-sin2x)(cos10x))

Prove the following: (frac(cos(pi+x)cos(pi-x))(sin(pi-x)cos(pi/2+x)))=cot^2x

Prove the following: frac(sin(x+y))(sin(x-y))=frac(tanx+tany)(tanx-tany)

Prove the following: sqrt(frac(1+sin2x)(1-sin2x))=tan(pi/4+x)