Home
Class 11
MATHS
Prove the following:(frac(2cos4x+1)(2cos...

Prove the following:`(frac(2cos4x+1)(2cosx+1))=(2cosx-1)(2cos2x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: (frac(cosx)(1+sinx))=(frac(cot(x/2)-1)(cot(x/2)+1))

Prove the following: (frac(sin3x)(cosx))+(frac(cos3x)(sinx))=2cot2x

Prove the following: (frac(cosx+sinx)(cosx-sinx))-(frac(cosx-sinx)(cosx+sinx))=2tan2x

Prove the following: (frac(cos(x-y))(cos(x+y)))=(frac(cotxcoty+1)(cotxcoty-1))

Prove the following: (frac(cos(pi+x)cos(pi-x))(sin(pi-x)cos(pi/2+x)))=cot^2x

Prove the following: cos(pi/4+x)+cos(pi/4-x)=sqrt2cosx

Prove the following: sqrt(2+sqrt(+2sqrt(2+2cos8x)))=2cosx

Prove the following: (frac(sin5x-2sin3x+sinx)(cos5x-cosx))=tanx

Prove the following: (frac(2cos2A+1)(2cos2A-1))=tan(60^@+A)tan(60^@-A)

Prove the following: (frac(cotAcot4A+1) (cotAcot4A-1)) = (frac(cos3A) (cos5A))