Home
Class 11
MATHS
Prove the following:sqrt(frac(1+sin2x)(1...

Prove the following:`sqrt(frac(1+sin2x)(1-sin2x))=tan(pi/4+x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: (frac(1+tanx)(1-tanx))^2=(frac(tan(pi/4+x))(tan(pi/4-x)))

Prove the following: (frac(cos2theta)(1+sin2theta))=tan(pi/4-0)

Prove the following: (frac(sin2x+sin2y)(sin2x-sin2y))=(frac(tan(x+y))(tan(x-y)))

Prove the following: (frac(sin^3(pi+x)sec^2(pi-x)tan(2pi-x))(cos^2(pi/2+x)sin(pi-x)cosec^2(-x)))=tan^3x

Prove the following: (frac(sin5x-2sin3x+sinx)(cos5x-cosx))=tanx

Prove the following: (frac(cos(pi+x)cos(pi-x))(sin(pi-x)cos(pi/2+x)))=cot^2x

Prove the following: (frac(cos9x-cos5x)(sin17x-sin3x))=(frac(-sin2x)(cos10x))

Prove the following: (frac(sin3x)(cosx))+(frac(cos3x)(sinx))=2cot2x

Prove that sec x+tan x=sqrt((1+sin x)/(1-sin x))

Prove the following: sin18^@=(frac(sqrt5-1)(4))