Home
Class 11
MATHS
In triangleABC prove that sin^2(A/2)+s...

In `triangleABC` prove that `sin^2(A/2)+sin^2(B/2)+sin^2(C/2)=1-2sin(A/2)sin(B/2)sin(C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangleABC,A+B+C=pi ,show that sin^2( A/2)+sin^2 (B/2)-sin^2 (C/2)=1-2cos(A/2)cos(B/2)sin(C/2)

If A+B+C=pi then prove that cos^2 (A/2)+cos^2 (B/2)-cos^2 (C/2)=2cos(A/2)cos(B/2)sin(C/2)

In triangleABC,A+B+C=pi ,show that sin^2A+sin^2B-sin^2C=2sinAsinBcosC

Prove that sin^2(pi/8)+sin^2(3pi/8)+sin^2(5pi/8)+sin^2(7pi/8)=2

Solve the following: If A+B+C=pi ,prove that sin(B+2C)+sin(C+2A)+sin(A+2B)= 4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

In triangleABC, a^(2) sin2C + c^(2) sin2A=

Prove that: sin^(2) (pi/8) +sin^(2) ((3pi)/8) +sin^(2)((5pi)/8)+sin^(2)((7pi)/8)=2

In triangle ABC, the value of sin 2A + sin 2B+ sin 2C is equal to

In triangle ABC, the value of sin 2A+sin 2B+sin 2C is equal to

Prove that sin(45^@+A)sin(45^@-A)=1/2cos2A.