Home
Class 11
MATHS
Prove the following:sin36^ °=(frac(sqrt1...

Prove the following:`sin36^ °=(frac(sqrt10-2sqrt5)(4))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: cos36^@=(frac(sqrt5+1)(4))

Prove the following: sin18^@=(frac(sqrt5-1)(4))

Prove the following: sin pi/8=1/2(sqrt(2-sqrt2))

Prove the following: sin^-1(frac{1}{sqrt2})-3sin^-1(frac{sqrt3}{2}) = frac{-3pi}{4}

Prove the following: cos^-1x = tan^-1(frac{sqrt(1-x^2)}[x}) , if x > 0 .

Prove the following: cos^-1x = pi + tan^-1(frac{sqrt(1-x^2)}{x}) if x < 0

Find the principal values of the following: sin^-1(frac{1}{sqrt2})

Find the principal values of the following: sin^-1(frac{1}{sqrt2})

Prove the following: sin^-1(frac{12}{13})+cos^-1(frac{4}{5})+tan^-1(frac{63}{16}) = pi

Prove the following: (frac(cos9x-cos5x)(sin17x-sin3x))=(frac(-sin2x)(cos10x))