Home
Class 11
MATHS
Solve the following:Show that(costheta+i...

Solve the following:Show that`(costheta+isintheta)^3=cos3theta+isin3theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Select and write the correct answer from the given alternatives in each of the following: Let z = (costheta + isintheta) / (costheta - isintheta) , pi / 4 < theta < pi / 2 . Then, arg z is

Use De Moivers theorem and simplify the following: frac{cos 5theta + i sin 5theta}{(cos 3theta - i sin 3theta)^2}

Solve the following:Prove that (frac(cos^3theta-cos3theta)(costheta))+(frac(sin^3theta+sin3theta)(sintheta))=3

Select and write the correct answer from the given alternatives in each of the following: (frac(3costheta+cos3theta)(3sintheta-sin3theta)) =

Solve the following: Fing theta ,if [[sintheta],[costheta],[theta]][sintheta,costheta,theta]=[17]

Use De moivers theorem and simplify the following. (Cos 5theta + i Sin 5theta) / (Cos 3theta - i Sin 3theta)^2

Prove the following ((1+cottheta+tantheta)(sintheta-costheta))/(sec^3theta-cosec^3theta)=sin^2thetacos^2theta

(sintheta+sin 2theta)/(1+costheta+cos2theta)=

Simplify the following. ((Cos 3theta - iSin 3theta) ( Cos 2theta + i Sin 2theta)) /((Cos 4theta + i Sin 4theta)^6 (Cos theta + i Sin theta)^6)

frac{(cos2theta-isin2theta)^4(cos4theta+isin4theta)^-5}{(cos3theta+isin3theta)^-2(cos3theta-isin3theta)^-9} =