Home
Class 11
MATHS
Solve the following: If A+B+C=pi,prove t...

Solve the following: If `A+B+C=pi`,prove that `sin(B+2C)+sin(C+2A)+sin(A+2B)= 4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following: In /_\ABC prove the following a^2sin(B-C) = (b^2-c^2)sinA

In /_\ ABC , prove that a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B) = 0

In triangleABC prove that sin^2(A/2)+sin^2(B/2)+sin^2(C/2)=1-2sin(A/2)sin(B/2)sin(C/2)

If A+B+C=pi , then sin(A+B)=

Solve the following: In /_\ABC prove that cos(frac{A-B}{2}) = frac{a+b}{c}sin(frac{C}{2})

If A+B +C=pi, then sin (A+B)= .............. A) sin A B) sin B C) sin A+sin C D) sin C

Solve the following: In /_\ABC prove that (a-b)^2cos^2(frac{C}{2})+(a+b)^2sin^2(frac{C}{2}) = c^2

If A+B+C=pi then prove that cos^2 (A/2)+cos^2 (B/2)-cos^2 (C/2)=2cos(A/2)cos(B/2)sin(C/2)

In triangleABC,A+B+C=pi ,show that sin^2( A/2)+sin^2 (B/2)-sin^2 (C/2)=1-2cos(A/2)cos(B/2)sin(C/2)

Solve the following: With usual notations prove that frac{sin(A-B)}{sin(A+B)} = frac{a^2-b^2}{c^2}