Home
Class 11
MATHS
If A=[[4,8],[-2,-4]]prove that A^2=0...

If `A=[[4,8],[-2,-4]]`prove that `A^2=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[5,-3],[4,-3],[-2,1]] ,prove that (A^T)^T=A

If A=[[1,2,-5],[2,-3,4],[-5,4,9]] ,prove that (A)^T=A

If A=[[8,4],[10,5]],B=[[5,-4],[10,-8]] show that (A+B)^2=A^2+AB+B^2

Find the matrices A and B,if 2A-B=[[6,-6,0],[-4,2,1]] and A-2B=[[3,2,8],[-2,1,-7]]

Answer the following questions. If A=[[1,-1,0],[2,3,4],[0,1,2]] and B=[[2,2,-4],[-4,2,-4],[2,-1,5]] ,show that BA=6I

If A=[[7,3,0],[0,4,-2]],B=[[0,-2,3],[2,1,-4]] ,then find A^T+4B^T

Transform [[1,2,-4],[0,-4,8],[72,5,7]] into a lower triangular matrix by using column transformations.

If A=[[1,2,-3],[-3,7,-8],[0,-6,1]],B=[[9,-1,2],[-4,2,5],[4,0,-3] ,then find the matrix C such that A+B+C is a zero matrix

If A=[(1,4,4),(4,1,4),(4,4,1)] and A^(-1) exists and not equal to zero, then (A^(2)-8A)A^(-1) =