Home
Class 11
MATHS
If f(x) is continuous over [-pi, pi], wh...

If f(x) is continuous over `[-pi, pi]`, where f(x) is defined as
`f(x) = {(-2sin x, ",",-pi le x le (-pi)/2),(alpha sin x + beta, ",", -(pi)/2 lt x lt (pi)/2 ),(cos x, ",", (pi)/2 le x lt pi ):}`
then `alpha` and `beta` equals

A

a) `alpha = 2`, `beta = 1`

B

b) `alpha = beta = 1`

C

c) `alpha = -1`, beta=1`

D

d)`alpha=beta=2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = {(-2sin x, ",","if" x le -(pi)/2),(A sin x + B, ",", "if"-(pi)/2 lt x lt (pi)/2 ),(cos x, ",", "if" x ge (pi)/2 ):} Then

If f(x) = {(1, ",", "when" 0 lt x le (3pi)/4),(2sin(2/9x), ",", "when" (3pi)/4 lt x lt pi):} , then

If f(x) = {(ax+1,",",x le (pi)/(2)),(sin x+ b,",",x gt (pi)/(2)):} is continuous at x = (pi)/2 , then

If f(x)={:{(x sin x", for " 0 lt x le pi/2),(pi/2 sin (pi+x)", for " pi/2 lt x lt pi):} , then

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f (x) is continuous on [-4, 2], defined as f(x)=6b-3ax, "for" -4 le x lt -2 =4x+1," for" -2le x le2, find the value of a+b.

If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , then

If f(x) is continuous in [-2,2], where f(x) = {(x+a,",",x lt 0),(x,",",0 le x lt 1),(b-x,",",x ge 1):} , then

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=