Home
Class 11
MATHS
Show that (sqrt(3)/2 + i/2)^3 = i...

Show that `(sqrt(3)/2 + i/2)^3 = i`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (-1 + sqrt (3i))^3 is a real number.

Show that (-1+sqrt3 i)^3 is a real number

Show that (1 / sqrt(2) + i / sqrt(2))^10 + (1 / sqrt(2) - i / sqrt(2))^10 = 0 .

Simplify: ((sqrt 3)/2 + i/2)^3

Show that ((1)/( sqrt2) + (i)/( sqrt2 )) ^( 10) + ((1)/( sqrt2 ) - (i)/( sqrt2 )) ^( 10 ) = 0

Show that (frac{1+i}{sqrt 2})^8 + (frac{1-i}{sqrt 2})^8 = 2

Show that 4sqrt(2) I an irrational number.

If z = ((sqrt 3)/2 + i/2)^5 + ((sqrt 3)/2 - i/2)^5 , then

Show that (1- 2i )/( 3 - 4i ) + (1 + 2i )/( 3 + 4i ) is real.

Show that ((1 + i ) /( sqrt2 )) ^( 8) + ((1 - i )/( sqrt2 )) ^( 8) = 2.