Home
Class 11
MATHS
Expand (sqrt 3 + sqrt 4)^5...

Expand `(sqrt 3 + sqrt 4)^5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Expand (sqrt 5 - sqrt 3)^4

Expand (sqrt 5 + sqrt 3)^4

Expand: (i) (sqrt 3 + sqrt 2)^4 (ii) (sqrt 5 - sqrt 2)^5

Expand (sqrt 2 + 1)^5 - (sqrt 2 - 1)^5

Express the following in the form of (a+ib), a,b in R, i= sqrt (-1) State the values of a and b: ( sqrt 5 +2 sqrt (-4) )+(1- sqrt (-9) )+(2+3i)(2-3i)

Find the value of: (i) (sqrt 3 + 1)^4 - (sqrt 3 - 1)^4 (ii) (2 + sqrt 5)^5 + (2 - sqrt 5)^5

Express the follwing in the form of a + ib, a , b in R i=sqrt ( -1). State the value of a and b. ( - sqrt5 + 2 sqrt ( -4) ) + (1 - sqrt ( -9 ))+ (2 + 3i ) (2 - 3i )

Express the following in the form of a + ib, where a, b in R , i = sqrt-1 . State the value of a and b. (-sqrt(5) + 2sqrt(-4)) + (1 - (sqrt-9)) + (2 + 3i) (2 - 3i)

Rationalize the denominator: 1/(sqrt 5- sqrt 3)

Express the following expression in the form (a+ib), frac{(3+i sqrt 5)(3-i sqrt 5)}{(sqrt 3 + sqrt 2 i) - (sqrt 3 - sqrt 2 i)}