Home
Class 11
MATHS
Find the value of (sqrt 3 + 2)^4 - (sqrt...

Find the value of `(sqrt 3 + 2)^4 - (sqrt 3 - 2)^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of: (i) (sqrt 3 + 1)^4 - (sqrt 3 - 1)^4 (ii) (2 + sqrt 5)^5 + (2 - sqrt 5)^5

(sqrt 3 + sqrt 2)^6 + (sqrt 3 - sqrt 2)^6 =

Find the value of x ^(4) + 9 x ^(3) + 35 x ^(2) - x + 4, if x =- 5 + sqrt ( -4).

Express the following in the form of (a+ib), a,b in R, i= sqrt (-1) State the values of a and b: ( sqrt 5 +2 sqrt (-4) )+(1- sqrt (-9) )+(2+3i)(2-3i)

Express the follwing in the form of a + ib, a , b in R i=sqrt ( -1). State the value of a and b. ( - sqrt5 + 2 sqrt ( -4) ) + (1 - sqrt ( -9 ))+ (2 + 3i ) (2 - 3i )

Expand: (i) (sqrt 3 + sqrt 2)^4 (ii) (sqrt 5 - sqrt 2)^5

Find the value of discriminant. sqrt(2)x^(2)+4x+2sqrt(2)=0

Expand (sqrt 5 - sqrt 3)^4