Home
Class 11
MATHS
If an = 2^(2^n) + 1, then for n>1 last d...

If `a_n = 2^(2^n) + 1`, then for n>1 last digit of an is

A

a) 3

B

b) 5

C

c) 7

D

d) 8

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1-i)^n = 2^n , then n=

If "^(n+1)C_3 = 2 "^nC_2 , then n=

If (1-i)^n = 2^n , then n is equal to

If (n+2)! = 210(n-1)! , then the value of n is

Prove that 1 + w ^( n ) + w ^( 2n) = 3, if n is multiple of 3 1 + w ^( n ) + w ^( 2n) = 0, if n is not multiple of 3 n in N

If the direction cosines of two lines are l_(1), m_(1), n_(1) and l_(2), m_(2), n_(2) , then find the direction cosine of a line perpendicular to these lines. a) l_(1)+l_(2),m_(1)+m_(2),n_(1)+n_(2) b) l_(1)-l_(2),m_(1)-m_(2),n_(1)-n_(2) c) m_(1)n_(2)-m_(2)n_(1),n_(1)l_(2)-n_(2)l_(1),l_(1)m_(2)-l_(2)m_(1) d) l_(1)+2l_(2),m_(1)+2m_(2),n_(1)+2n_(2)

If I_n = int sin^n x \ dx, then n I_n - (n-1) I_(n-2) equals

If n(A)=2,P(A)=1/5,Then n(S)=?

If n in N , then 3.5^(2n+1) + 2^(3n+1) is divisible by