Home
Class 11
MATHS
C1/C0 + (2C2)/C1 + (3C3)/C2 + .... (nCn)...

`C_1/C_0 + (2C_2)/C_1 + (3C_3)/C_2 + .... (nC_n)/C_(n-1)` is

A

a) `2^n/n!`

B

b) `(n+1)^n/(n!)`

C

c) `(n(n-1))/2`

D

d) `(n(n+1))/2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: C_1/C_0 + 2 C_2/C_1 + 3 C_3/C_2 + .... + n C_n/(C_n -1) = (n(n+1))/2

C_(1) + C_(2) + C_(3) + ….. C_(n) = 2^(n)-1

Prove that: C_(1) + 2C_(2) + 3C_(3) + 4C_(4) +….. + nC_(n) = n.2^(n-1)

Show that C_0 + 2C_1 + 3C_2 +4C_3 +...+ (n + 1)C_n = (n + 2)2^(n-1)

C_(1) + C_(2) + C_(3) + ……….. C_(7) = 127

C_(1) + C_(2) + C_(3) + …… C_(6) = 63

Find n if ^(2n)C_3 : ^(n)C_2 = 52 : 3

[(1,3,-2),(-3,0,-5),(2,5,0)] =A [(1,0,0),(0,1,0),(0,0,1)] then, C_(2) rarr C_(2)-3C_(1) and C_(3) rarr C_(3) +2C_(1) gives... [(1,0,0),(3,-9,11),(-2,1,4)] =A [(-1,3,2),(0,-1,0),(0,0,-1)] [(1,0,0),(-3,-1,-4),(2,-9,11)] =A [(1,-3,2),(0,1,0),(0,0,1)] [(1,0,0),(-3,1,4),(-2,9,-11)] =A [(-1,3,2),(0,-1,0),(0,0,-1)] [(1,0,0),(-3,9,-11),(2,-1,4)] =A [(1,-3,2),(0,1,0),(0,0,1)]

Show that C_1 + C_2 + C_3 +...+ C_n = 2^n - 1

Show that: C_(0) + C_(2) + C_(4) +…… + C_(12) = C_(1) + C_(2) + C_(3) + C_(5) + ……. + C_(11) = 2048