Home
Class 11
MATHS
Without expanding, find the value of: (...

Without expanding, find the value of: `(2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding, find the value of: (i) (2x - 1)^5 + 5(2x - 1)^4 (1 - x) + 10(2x - 1)^3 (1 - x)^2 + 10(2x - 1)^2 (1 - x)^3 + 5(2x - 1) (1 - x)^4 + (1 - x)5

Without expanding, find the value of: (i) (x + 1)^4 - 4(x + 1)^3 (x - 1) + 6(x + 1)^2 (x - 1)^2 - 4(x + 1) (x - 1)^3 + (x -1)^4 (ii) (2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4

Find the value of x ^(3) - x ^(2) + 2x + 10 when x = 1 + sqrt3 i

Find the value of x if. |(x,-1,2),(2x,1,-3),(3,-4,5)|=29

Expand: (i) (2x^2 + 3)^4 (ii) ( 2x - 1/x )^6