Home
Class 12
MATHS
Let f(x)=({:((3|x|+4tanx)/(x),",",x ne0)...

Let `f(x)=({:((3|x|+4tanx)/(x),",",x ne0),(k,",",x=0):}` then f(x) is continuous at x = 0 for :

A

k = 7

B

k = 1

C

No values of k

D

k = 2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) for which the function \[ f(x) = \begin{cases} \frac{3|x| + 4\tan x}{x} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases} \] is continuous at \( x = 0 \), we need to ensure that the left-hand limit (LHL), right-hand limit (RHL), and the function value at \( x = 0 \) are all equal. ### Step 1: Calculate the Left-Hand Limit (LHL) as \( x \to 0^- \) For \( x \to 0^- \) (approaching 0 from the left), \( |x| = -x \). Therefore, we have: \[ f(x) = \frac{3(-x) + 4\tan x}{x} = \frac{-3x + 4\tan x}{x} \] This simplifies to: \[ f(x) = -3 + \frac{4\tan x}{x} \] Now, we need to find the limit: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left(-3 + \frac{4\tan x}{x}\right) \] Using the limit property \( \lim_{x \to 0} \frac{\tan x}{x} = 1 \), we get: \[ \lim_{x \to 0^-} f(x) = -3 + 4 \cdot 1 = 1 \] ### Step 2: Calculate the Right-Hand Limit (RHL) as \( x \to 0^+ \) For \( x \to 0^+ \) (approaching 0 from the right), \( |x| = x \). Thus, we have: \[ f(x) = \frac{3x + 4\tan x}{x} = \frac{3x + 4\tan x}{x} \] This simplifies to: \[ f(x) = 3 + \frac{4\tan x}{x} \] Now we find the limit: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(3 + \frac{4\tan x}{x}\right) \] Using the same limit property, we find: \[ \lim_{x \to 0^+} f(x) = 3 + 4 \cdot 1 = 7 \] ### Step 3: Set the Limits Equal to the Function Value at \( x = 0 \) For \( f(x) \) to be continuous at \( x = 0 \), we need: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \] This gives us: \[ 1 = 7 = k \] Since \( 1 \neq 7 \), there is no value of \( k \) that can make the function continuous at \( x = 0 \). ### Conclusion The function \( f(x) \) is discontinuous at \( x = 0 \) for all values of \( k \). ---

To determine the value of \( k \) for which the function \[ f(x) = \begin{cases} \frac{3|x| + 4\tan x}{x} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:((5|x|+4tanx)/(x),xne0),(k,x=0):} , then f(x) is continuous at x = 0 for

Let {:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is continuous at x = 0 for ,

If f(x)={((tanx)/(sinx)",", x ne 0),(1",", x =0):} then f(x) is

Let f(x)={((sin pix)/(5x)",",x ne0),(k"," , x =0):} if f(x) is continuous at x = 0, then k is equal to

Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x) is continuous at x = 0 if

For what value of k, the function f(x)={((x)/(|x|+2x^(2))",", x ne 0),(k",", x=0):} is continuous at x = 0 ?

If f(x)={(x^(k) sin((1)/(x))",",x ne 0),(0",", x =0):} is continuous at x = 0, then