Home
Class 12
MATHS
If I=lim(x to 0) sin((e^(x)-x-1-(x^(2)...

If `I=lim_(x to 0) sin((e^(x)-x-1-(x^(2))/(2))/(x^(2)))`, then limit

A

does not exist

B

exists and equals 1

C

exists and equals 0

D

exists and equals `(1)/(2)`

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION PAPER 2019

    WB JEE PREVIOUS YEAR PAPER|Exercise MULTIPLE CHOICE QUESTIONS|73 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (e^(x^2) - 1)/sin^2x

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

lim_(x to 0)(e^(2x)-1)/(sin 3x) = ?

lim_( x to 0) (sin (pi sin^(2)x))/x^(2) =

Evaluate lim_(xto0) ((1+x)^(1//x)-e+(1)/(2)ex)/(x^(2)) .

Evaluate: lim_(x to 0)(e^x+e^(-x)-2)/(x^(2))

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

lim_(x->0)(sin^2x)/x

Evaluate lim_(xto2) sin(e^(x-2)-1)/(log(x-1))