Home
Class 14
MATHS
(a)/(3)=(b)/(3)=(c )/(2)=(a+b+2c)/(x) ...

`(a)/(3)=(b)/(3)=(c )/(2)=(a+b+2c)/(x)`
find `x=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{a}{3} = \frac{b}{3} = \frac{c}{2} = \frac{a+b+2c}{x}\), we can follow these steps: ### Step 1: Set the common ratio Let us denote the common ratio by \(k\). Therefore, we can express \(a\), \(b\), and \(c\) in terms of \(k\): \[ \frac{a}{3} = k \implies a = 3k \] \[ \frac{b}{3} = k \implies b = 3k \] \[ \frac{c}{2} = k \implies c = 2k \] ### Step 2: Substitute \(a\), \(b\), and \(c\) into the equation Now we substitute \(a\), \(b\), and \(c\) into the equation \(\frac{a+b+2c}{x} = k\): \[ \frac{3k + 3k + 2(2k)}{x} = k \] ### Step 3: Simplify the numerator Now simplify the numerator: \[ 3k + 3k + 4k = 10k \] So, we have: \[ \frac{10k}{x} = k \] ### Step 4: Cross-multiply to solve for \(x\) Cross-multiplying gives: \[ 10k = kx \] ### Step 5: Divide by \(k\) (assuming \(k \neq 0\)) Assuming \(k \neq 0\), we can divide both sides by \(k\): \[ 10 = x \] ### Step 6: Conclusion Thus, the value of \(x\) is: \[ \boxed{10} \]
Promotional Banner

Topper's Solved these Questions

  • RATIO

    MOTHERS|Exercise Basic of ratio|25 Videos
  • RATIO

    MOTHERS|Exercise Sum & Product|23 Videos
  • PROFIT & LOSS (PREVIOUS YEAR QUESTIONS 2018)

    MOTHERS|Exercise QUESTIONS |123 Videos
  • RATIO & PROPORTION

    MOTHERS|Exercise Multiple Choice Question|246 Videos

Similar Questions

Explore conceptually related problems

If (x)/(2a-3b)=(y)/(3b-4c)=(z)/(4c-2a) , then find the value of x^(3)+y^(3)+z^(3) .

If (a)/(x-1) + (4b)/(y-2b) + (9c)/(z-3c)= 6-a find (ax)/(x-1) + (2y)/(y-2b) + (3z)/(z-3c) = ?

If (3x^(2)+14x+10)/(x^(2)(x+2))=(A)/(x)+(B)/(x^(2))+(C )/(x+2) , then A , B and C , respectively are _______.

If 3x=a+b+c, then the value of (x-a)^(3)+(x-b)^(3)+(x-c)^(3)-3(x-a)(x-b)(x-c) is (a) a+b+c( b )(a-b)(b-c)(c-a)(c)0(d) None of these

Find x in terms of a , b and c : (a)/(x - a) + (b)/(x - b) = (2 c)/(x - c) , x - a , b , c

Find the value of (x-a)^(3)+(x-b)^(3)+(x-c)^(3)-3(x-a)(x-b)(x-c) when a+b+c=3x

Let a,b,c be such that (1)/((1-x)(1-2x)(1-3x))=(a)/(1-x)+(b)/(1-2x)+(c)/(1-3x) then (a)/(1)+(b)/(3)+(c)/(5)

The value of x satisfying the equation (6x+2a+3b+c)/(6x+2a-3b-c)=(2x+6a+b+3c)/(2x+6a-b-3c)quad is(ab)/(c)(b)(2ab)/(c)(c)(ab)/(3c) (d) (ab)/(2c)

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|= (a -b) (b -c) (c -a) (a + b+c) where a, b, c are all different, then the determinant |(1,1,1),((x-a)^(2),(x -b)^(2),(x -c)^(2)),((x -b) (x -c),(x -c) (x -a),(x -a) (x -b))| vanishes when