Home
Class 14
MATHS
(2)/(3)a=(4)/(5)b=(1)/(2)c, find a:b:c...

`(2)/(3)a=(4)/(5)b=(1)/(2)c`, find `a:b:c`

A

A) 6:5:8

B

B) 2:3:4

C

C) 1:1:1

D

D) 2:3:5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{2}{3}a = \frac{4}{5}b = \frac{1}{2}c\) and find the ratio \(a:b:c\), we can follow these steps: ### Step 1: Set the common value Let \(\frac{2}{3}a = \frac{4}{5}b = \frac{1}{2}c = k\). ### Step 2: Express \(a\), \(b\), and \(c\) in terms of \(k\) From the equation \(\frac{2}{3}a = k\): \[ a = \frac{3}{2}k \] From the equation \(\frac{4}{5}b = k\): \[ b = \frac{5}{4}k \] From the equation \(\frac{1}{2}c = k\): \[ c = 2k \] ### Step 3: Write the expressions for \(a\), \(b\), and \(c\) Now we have: - \(a = \frac{3}{2}k\) - \(b = \frac{5}{4}k\) - \(c = 2k\) ### Step 4: Find a common denominator to express the ratios To compare \(a\), \(b\), and \(c\), we can express them with a common denominator. The least common multiple of the denominators (2, 4, and 1) is 4. Rewriting each expression: - \(a = \frac{3}{2}k = \frac{6}{4}k\) - \(b = \frac{5}{4}k\) - \(c = 2k = \frac{8}{4}k\) ### Step 5: Form the ratio \(a:b:c\) Now, we can write the ratio: \[ a:b:c = \frac{6}{4}k : \frac{5}{4}k : \frac{8}{4}k \] This simplifies to: \[ a:b:c = 6 : 5 : 8 \] ### Final Answer Thus, the ratio \(a:b:c\) is \(6:5:8\). ---
Promotional Banner

Topper's Solved these Questions

  • RATIO

    MOTHERS|Exercise Basic of ratio|25 Videos
  • RATIO

    MOTHERS|Exercise Sum & Product|23 Videos
  • PROFIT & LOSS (PREVIOUS YEAR QUESTIONS 2018)

    MOTHERS|Exercise QUESTIONS |123 Videos
  • RATIO & PROPORTION

    MOTHERS|Exercise Multiple Choice Question|246 Videos

Similar Questions

Explore conceptually related problems

If (a)/(b)=(2)/(3),(b)/(c)=(4)/(5) then find a:b:c

(1)/(3)A=(1)/(4)B=(1)/(5)C, then A:B:C is

If (a)/(2)=(b)/(3)=(c)/(4), then a:b:c=2:3:4(b)4:3:23:2:4(d) None of these

a +b+c= 3, (1)/(a) + (1)/(b) + (1)/(c )=2 a^(2) + b^(2) + c^(2)=6 find abc=?

If a^(2)+9b^(2)+25c^(2)=abc((15)/(a)+(5)/(b)+(3)/(c)), then a,b,c are in

In /_ABC if cot((A)/(2)):cot((B)/(2)):cot((C)/(2))=3:5:7 then a:b:c?

If a:b:c=2:3:4, then (1)/(a):(1)/(b):(1)/(c) is equal to (1)/(4):(1)/(3):(1)/(2) b.4:3:2 c.6:4:3 d.none of these

If A=(1)/(3)B and B=(1)/(2)C ,then A:B:C=?