Home
Class 14
MATHS
a:a+b+c=2:9 b:a+c=4:7 Find a:b:c=?...

`a:a+b+c=2:9`
`b:a+c=4:7`
Find `a:b:c=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given ratios to find the values of \(a\), \(b\), and \(c\). ### Step 1: Write down the given ratios We have two ratios given: 1. \( a : (a + b + c) = 2 : 9 \) 2. \( b : (a + c) = 4 : 7 \) ### Step 2: Express \(a + b + c\) and \(a + c\) in terms of \(a\) and \(b\) From the first ratio, we can express \(a\) in terms of \(a + b + c\): \[ \frac{a}{a + b + c} = \frac{2}{9} \] This implies: \[ 9a = 2(a + b + c) \] Expanding this gives: \[ 9a = 2a + 2b + 2c \] Rearranging, we have: \[ 7a = 2b + 2c \quad \text{(1)} \] From the second ratio, we can express \(b\) in terms of \(a + c\): \[ \frac{b}{a + c} = \frac{4}{7} \] This implies: \[ 7b = 4(a + c) \] Expanding this gives: \[ 7b = 4a + 4c \] Rearranging, we have: \[ 4a + 4c = 7b \quad \text{(2)} \] ### Step 3: Solve the equations (1) and (2) From equation (1): \[ 2b + 2c = 7a \implies b + c = \frac{7a}{2} \quad \text{(3)} \] Substituting \(c\) from equation (3) into equation (2): \[ 4a + 4c = 7b \] Substituting \(c = \frac{7a}{2} - b\) into this gives: \[ 4a + 4\left(\frac{7a}{2} - b\right) = 7b \] Expanding this: \[ 4a + 14a - 4b = 7b \] Combining like terms: \[ 18a = 11b \] Thus, we can express \(b\) in terms of \(a\): \[ b = \frac{18a}{11} \quad \text{(4)} \] ### Step 4: Substitute \(b\) back to find \(c\) Now substitute \(b\) from equation (4) into equation (3): \[ b + c = \frac{7a}{2} \] Substituting \(b = \frac{18a}{11}\): \[ \frac{18a}{11} + c = \frac{7a}{2} \] To solve for \(c\), we first find a common denominator: \[ c = \frac{7a}{2} - \frac{18a}{11} \] Finding a common denominator (22): \[ c = \frac{77a}{22} - \frac{36a}{22} = \frac{41a}{22} \] ### Step 5: Express \(a\), \(b\), and \(c\) in terms of a common variable Now we have: - \(a = a\) - \(b = \frac{18a}{11}\) - \(c = \frac{41a}{22}\) ### Step 6: Find the ratio \(a : b : c\) To express \(a : b : c\) in the simplest form, we can use a common multiple for the denominators: Let \(a = 22k\) for some \(k\): - \(b = \frac{18 \times 22k}{11} = 36k\) - \(c = \frac{41 \times 22k}{22} = 41k\) Thus, the ratio \(a : b : c\) is: \[ a : b : c = 22k : 36k : 41k = 22 : 36 : 41 \] ### Final Answer The final ratio is: \[ a : b : c = 22 : 36 : 41 \]
Promotional Banner

Topper's Solved these Questions

  • RATIO

    MOTHERS|Exercise Sum & Product|23 Videos
  • PROFIT & LOSS (PREVIOUS YEAR QUESTIONS 2018)

    MOTHERS|Exercise QUESTIONS |123 Videos
  • RATIO & PROPORTION

    MOTHERS|Exercise Multiple Choice Question|246 Videos

Similar Questions

Explore conceptually related problems

If a:b = 3:5 and b:c = 6:7, find a:b:c

If a:b=5.6 and b:c=4:7 then a:b:c=

If a:b=2:3 and b:c=5:7 then find a:c and a:b:c

If a:b = 5:6 and b:c = 3:4, then find a:b:c.