Home
Class 14
MATHS
Find number of zeros in the end of 1^20 ...

Find number of zeros in the end of `1^20 xx 2^20 xx 3^20xx 4^20 ................. Xx38^20.`

A

160

B

180

C

150

D

120

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of zeros at the end of the product \(1^{20} \times 2^{20} \times 3^{20} \times \ldots \times 38^{20}\), we need to determine how many times the number 10 can be factored from this product. Since \(10 = 2 \times 5\), we will find the powers of 2 and 5 in the product and take the minimum of the two. ### Step-by-Step Solution: 1. **Identify the Product**: The product we are considering is: \[ 1^{20} \times 2^{20} \times 3^{20} \times \ldots \times 38^{20} \] This can be rewritten as: \[ (1 \times 2 \times 3 \times \ldots \times 38)^{20} \] 2. **Count the Factors of 5**: We will count the number of factors of 5 in \(1 \times 2 \times 3 \times \ldots \times 38\) using the formula: \[ \text{Number of factors of } p = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \ldots \] Here, \(n = 38\) and \(p = 5\). - Calculate: \[ \left\lfloor \frac{38}{5} \right\rfloor = 7 \] \[ \left\lfloor \frac{38}{25} \right\rfloor = 1 \] \[ \left\lfloor \frac{38}{125} \right\rfloor = 0 \] - Total factors of 5: \[ 7 + 1 + 0 = 8 \] 3. **Count the Factors of 2**: Now, we will count the number of factors of 2 in \(1 \times 2 \times 3 \times \ldots \times 38\) using the same formula with \(p = 2\). - Calculate: \[ \left\lfloor \frac{38}{2} \right\rfloor = 19 \] \[ \left\lfloor \frac{38}{4} \right\rfloor = 9 \] \[ \left\lfloor \frac{38}{8} \right\rfloor = 4 \] \[ \left\lfloor \frac{38}{16} \right\rfloor = 2 \] \[ \left\lfloor \frac{38}{32} \right\rfloor = 1 \] \[ \left\lfloor \frac{38}{64} \right\rfloor = 0 \] - Total factors of 2: \[ 19 + 9 + 4 + 2 + 1 + 0 = 35 \] 4. **Calculate the Total Factors in the Product**: Since we have \(1 \times 2 \times 3 \times \ldots \times 38\) raised to the power of 20, we multiply the counts of factors by 20: - Factors of 5 in the product: \[ 8 \times 20 = 160 \] - Factors of 2 in the product: \[ 35 \times 20 = 700 \] 5. **Determine the Number of Trailing Zeros**: The number of trailing zeros is determined by the minimum of the counts of factors of 2 and 5: \[ \text{Trailing Zeros} = \min(160, 700) = 160 \] ### Final Answer: The number of zeros at the end of the product \(1^{20} \times 2^{20} \times 3^{20} \times \ldots \times 38^{20}\) is **160**.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

Find the value of (-20)xx(-2)xx(-5)xx7

Find the number of Zeros at the end of the product - 2^3 xx 5^4 xx 4^2 xx 10^8 xx 6^10 xx 15^12 xx 8^14 X 20^16 xx 10^18 xx 25^20

Knowledge Check

  • Find number of zeros in the end of 1^3xx2^4xx3^5xx......xx26^28

    A
    100
    B
    112
    C
    125
    D
    128
  • Find the number of zeroes in 10 xx 20 xx 30 xx ... xx 1000.

    A
    100
    B
    124
    C
    120
    D
    150
  • Find the no. of zeros in expression : 10 xx 20 xx 30 xx ……xx 1000 .

    A
    124
    B
    130
    C
    249
    D
    150
  • Similar Questions

    Explore conceptually related problems

    Find the number of Zeros at the end of the product - 20 xx 40 xx 7600 xx 600 xx 300 xx 1000

    What is the value of 35 xx 2 + 20 - 10 ?

    Find the value of (2^(20) div 2^(15)) xx 2^(3) .

    Find the value of (2^(20) div2^(15)) xx 2^(3) .

    283xx56+252=20 xx ?