Home
Class 14
MATHS
If x=1/(5+2sqrt6), the value of 1/x is?...

If `x=1/(5+2sqrt6)`, the value of `1/x` is?

A

`5+2sqrt6`

B

`5-2sqrt6`

C

`3+2sqrt3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \frac{1}{x} \) when \( x = \frac{1}{5 + 2\sqrt{6}} \), we can follow these steps: ### Step 1: Write the expression for \( \frac{1}{x} \) Given \( x = \frac{1}{5 + 2\sqrt{6}} \), we can express \( \frac{1}{x} \) as: \[ \frac{1}{x} = 5 + 2\sqrt{6} \] ### Step 2: Rationalize the denominator To confirm this, we can multiply \( x \) by its conjugate to rationalize the denominator. The conjugate of \( 5 + 2\sqrt{6} \) is \( 5 - 2\sqrt{6} \). ### Step 3: Multiply numerator and denominator by the conjugate We multiply both the numerator and denominator of \( x \) by \( 5 - 2\sqrt{6} \): \[ x = \frac{1}{5 + 2\sqrt{6}} \cdot \frac{5 - 2\sqrt{6}}{5 - 2\sqrt{6}} = \frac{5 - 2\sqrt{6}}{(5 + 2\sqrt{6})(5 - 2\sqrt{6})} \] ### Step 4: Simplify the denominator Now, we simplify the denominator using the difference of squares: \[ (5 + 2\sqrt{6})(5 - 2\sqrt{6}) = 5^2 - (2\sqrt{6})^2 = 25 - 24 = 1 \] ### Step 5: Final expression for \( x \) Thus, we have: \[ x = 5 - 2\sqrt{6} \] ### Step 6: Calculate \( \frac{1}{x} \) Now, substituting back to find \( \frac{1}{x} \): \[ \frac{1}{x} = 5 + 2\sqrt{6} \] ### Conclusion Therefore, the value of \( \frac{1}{x} \) is: \[ \frac{1}{x} = 5 + 2\sqrt{6} \] ---
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

If x=5-2sqrt(6), find the value of x^(2)+(1)/(x^(2))

If x = 1/(sqrt(2) - 1) , then the value of x^2 - 6 + 1/(x^2) is :

if (x+5)/(x-6) = (x-1)/(x+2) , then value of x is

If x=6+2sqrt(6), then what is the value of sqrt(x-1)+(1)/(sqrt(x-1))

if x=5-2sqrt(6) then the value of x^(2)+(1)/(x^(2))

If x = (5-sqrt(21))/2 , find the value of x+(1)/(x)

1/(sqrt(6x-5))