Home
Class 14
MATHS
Square root of 13 - 4sqrt3 is ?...

Square root of `13 - 4sqrt3` is ?

A

`sqrt(12)+1`

B

`2sqrt3+7`

C

`sqrt(12)-1`

D

`2sqrt3-7`

Text Solution

AI Generated Solution

The correct Answer is:
To find the square root of \( 13 - 4\sqrt{3} \), we can express it in a simpler form. Let's denote \( x = \sqrt{13 - 4\sqrt{3}} \). ### Step 1: Assume the form of the square root Assume that \( x \) can be expressed as \( \sqrt{a} - \sqrt{b} \). Then we have: \[ x^2 = a + b - 2\sqrt{ab} \] ### Step 2: Set up the equation From our original expression, we know: \[ x^2 = 13 - 4\sqrt{3} \] This gives us two equations: 1. \( a + b = 13 \) 2. \( -2\sqrt{ab} = -4\sqrt{3} \) ### Step 3: Solve for \( ab \) From the second equation, we can simplify: \[ 2\sqrt{ab} = 4\sqrt{3} \implies \sqrt{ab} = 2\sqrt{3} \implies ab = (2\sqrt{3})^2 = 4 \cdot 3 = 12 \] ### Step 4: Solve the system of equations Now we have the system of equations: 1. \( a + b = 13 \) 2. \( ab = 12 \) We can treat this as a quadratic equation where \( a \) and \( b \) are the roots: \[ t^2 - (a+b)t + ab = 0 \implies t^2 - 13t + 12 = 0 \] ### Step 5: Find the roots of the quadratic equation Using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{13 \pm \sqrt{13^2 - 4 \cdot 1 \cdot 12}}{2 \cdot 1} \] Calculating the discriminant: \[ 13^2 - 48 = 169 - 48 = 121 \] Thus, \[ t = \frac{13 \pm \sqrt{121}}{2} = \frac{13 \pm 11}{2} \] This gives us: \[ t = \frac{24}{2} = 12 \quad \text{and} \quad t = \frac{2}{2} = 1 \] ### Step 6: Identify \( a \) and \( b \) So, we have \( a = 12 \) and \( b = 1 \) (or vice versa). ### Step 7: Write the final expression Thus, we can express \( x \) as: \[ x = \sqrt{12} - \sqrt{1} = 2\sqrt{3} - 1 \] ### Final Answer Therefore, the square root of \( 13 - 4\sqrt{3} \) is: \[ \sqrt{13 - 4\sqrt{3}} = 2\sqrt{3} - 1 \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

The square root of 33 - 4 sqrt35 is :

Find the square root of 21 - 4sqrt5 + 8sqrt3 - 4 sqrt15

The quadratic equation with one root as the square root of -47+8sqrt(-3) is

MOTHERS-NUMBER SYSTEM-O
  1. The value of is-

    Text Solution

    |

  2. The value of

    Text Solution

    |

  3. Square root of 13 - 4sqrt3 is ?

    Text Solution

    |

  4. Square root of 139 - 80sqrt3 is ?

    Text Solution

    |

  5. It is given that (2^32 + 1) is completely divisible by a number. That ...

    Text Solution

    |

  6. lf x=(sqrt3)/2, then value of (sqrt(1+x))/(1+sqrt(1+x))+(sqrt(1-x))/(1...

    Text Solution

    |

  7. The smallest value by which 63520 is substracted to make it a perfect...

    Text Solution

    |

  8. The value of [root(3)(root(6)(5^9))]^4root(3)(root(6)(5^9))^4 is-

    Text Solution

    |

  9. The simplification of ((2+sqrt3)/(2-sqrt3)+(2-sqrt3)/(2+sqrt3)+(sqrt3-...

    Text Solution

    |

  10. The value of sqrt(((sqrt12-sqrt8)(sqrt3+sqrt2))/(5+sqrt(24))) is-

    Text Solution

    |

  11. (sqrt5)/(sqrt3+sqrt2)-(3sqrt3)/(sqrt5+sqrt2)+(2sqrt2)/(sqrt5+sqrt3) is...

    Text Solution

    |

  12. 1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)+1/(sqrt6+sqrt7)+1/(sqr...

    Text Solution

    |

  13. Simplify 1/(sqrt(100)-sqrt(99))-1/(sqrt(99)-sqrt(98))+1/(sqrt(98)-sq...

    Text Solution

    |

  14. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  15. (3sqrt2)/(sqrt6+sqrt3)-(2sqrt6)/(sqrt3+1)+(2sqrt3)/(sqrt6+2) is equal ...

    Text Solution

    |

  16. If x=1+sqrt(2)+sqrt(3), then the value of (x+(1)/(x-1)) is

    Text Solution

    |

  17. If a, b are rational numbers and asqrtbsqrt3=sqrt(98)+sqrt(108)-sqrt(4...

    Text Solution

    |

  18. If root(3)(a)=root(3)(26)+root(3)(7)+root(3)(63), then-

    Text Solution

    |

  19. The value of sqrt(2^3sqrt(4sqrt(2^3sqrt(4.........)))) is-

    Text Solution

    |

  20. If (3x - 2y) : (2x + 3y) = 5 : 6 then the value of ((root(3)(x)+root(3...

    Text Solution

    |