Home
Class 14
MATHS
Square root of 139 - 80sqrt3 is ?...

Square root of `139 - 80sqrt3` is ?

A

`5sqrt3+8`

B

`5sqrt3-8`

C

`5sqrt3+12`

D

`5sqrt3-12`

Text Solution

AI Generated Solution

The correct Answer is:
To find the square root of \( 139 - 80\sqrt{3} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt{139 - 80\sqrt{3}} \] ### Step 2: Assume a form for the square root We assume that the square root can be expressed in the form: \[ \sqrt{a} - \sqrt{b} \] where \( a \) and \( b \) are positive numbers. ### Step 3: Square both sides Squaring both sides gives us: \[ 139 - 80\sqrt{3} = a + b - 2\sqrt{ab} \] ### Step 4: Equate the rational and irrational parts From the equation, we can equate the rational and irrational parts: 1. \( a + b = 139 \) 2. \( -2\sqrt{ab} = -80\sqrt{3} \) From the second equation, we can simplify: \[ 2\sqrt{ab} = 80\sqrt{3} \implies \sqrt{ab} = 40\sqrt{3} \implies ab = 4800 \] ### Step 5: Solve the system of equations Now we have a system of equations: 1. \( a + b = 139 \) 2. \( ab = 4800 \) We can solve this system by substituting \( b = 139 - a \) into the second equation: \[ a(139 - a) = 4800 \] This simplifies to: \[ 139a - a^2 = 4800 \implies a^2 - 139a + 4800 = 0 \] ### Step 6: Use the quadratic formula We can use the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( A = 1, B = -139, C = 4800 \): \[ a = \frac{139 \pm \sqrt{(-139)^2 - 4 \cdot 1 \cdot 4800}}{2 \cdot 1} \] Calculating the discriminant: \[ (-139)^2 = 19321 \] \[ 4 \cdot 1 \cdot 4800 = 19200 \] \[ 19321 - 19200 = 121 \] Thus, we have: \[ a = \frac{139 \pm \sqrt{121}}{2} = \frac{139 \pm 11}{2} \] ### Step 7: Find the values of \( a \) and \( b \) Calculating the two possible values: 1. \( a = \frac{150}{2} = 75 \) 2. \( a = \frac{128}{2} = 64 \) So, we have \( a = 75 \) and \( b = 64 \) (or vice versa). ### Step 8: Write the square root Thus, we can express the square root as: \[ \sqrt{139 - 80\sqrt{3}} = \sqrt{75} - \sqrt{64} \] Calculating the square roots: \[ \sqrt{75} = 5\sqrt{3}, \quad \sqrt{64} = 8 \] So we have: \[ \sqrt{139 - 80\sqrt{3}} = 5\sqrt{3} - 8 \] ### Final Answer The final answer is: \[ \sqrt{139 - 80\sqrt{3}} = 5\sqrt{3} - 8 \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

The square root of 33 - 4 sqrt35 is :

What is one of the square roots of 9 - 2 sqrt14 ?

What is the square root of 16 + 6sqrt(7) ?

MOTHERS-NUMBER SYSTEM-O
  1. The value of

    Text Solution

    |

  2. Square root of 13 - 4sqrt3 is ?

    Text Solution

    |

  3. Square root of 139 - 80sqrt3 is ?

    Text Solution

    |

  4. It is given that (2^32 + 1) is completely divisible by a number. That ...

    Text Solution

    |

  5. lf x=(sqrt3)/2, then value of (sqrt(1+x))/(1+sqrt(1+x))+(sqrt(1-x))/(1...

    Text Solution

    |

  6. The smallest value by which 63520 is substracted to make it a perfect...

    Text Solution

    |

  7. The value of [root(3)(root(6)(5^9))]^4root(3)(root(6)(5^9))^4 is-

    Text Solution

    |

  8. The simplification of ((2+sqrt3)/(2-sqrt3)+(2-sqrt3)/(2+sqrt3)+(sqrt3-...

    Text Solution

    |

  9. The value of sqrt(((sqrt12-sqrt8)(sqrt3+sqrt2))/(5+sqrt(24))) is-

    Text Solution

    |

  10. (sqrt5)/(sqrt3+sqrt2)-(3sqrt3)/(sqrt5+sqrt2)+(2sqrt2)/(sqrt5+sqrt3) is...

    Text Solution

    |

  11. 1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)+1/(sqrt6+sqrt7)+1/(sqr...

    Text Solution

    |

  12. Simplify 1/(sqrt(100)-sqrt(99))-1/(sqrt(99)-sqrt(98))+1/(sqrt(98)-sq...

    Text Solution

    |

  13. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  14. (3sqrt2)/(sqrt6+sqrt3)-(2sqrt6)/(sqrt3+1)+(2sqrt3)/(sqrt6+2) is equal ...

    Text Solution

    |

  15. If x=1+sqrt(2)+sqrt(3), then the value of (x+(1)/(x-1)) is

    Text Solution

    |

  16. If a, b are rational numbers and asqrtbsqrt3=sqrt(98)+sqrt(108)-sqrt(4...

    Text Solution

    |

  17. If root(3)(a)=root(3)(26)+root(3)(7)+root(3)(63), then-

    Text Solution

    |

  18. The value of sqrt(2^3sqrt(4sqrt(2^3sqrt(4.........)))) is-

    Text Solution

    |

  19. If (3x - 2y) : (2x + 3y) = 5 : 6 then the value of ((root(3)(x)+root(3...

    Text Solution

    |

  20. If 11sqrtn=sqrt(112)+sqrt(343), then value of n is?

    Text Solution

    |