Home
Class 14
MATHS
1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5...

`1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)+1/(sqrt6+sqrt7)+1/(sqrt7+sqrt8)+1/(sqrt8+sqrt9)` is equal to?

A

a)`sqrt3`

B

b)`3sqrt3`

C

c)`3-sqrt3`

D

d)`5-sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{\sqrt{3} + \sqrt{4}} + \frac{1}{\sqrt{4} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{6}} + \frac{1}{\sqrt{6} + \sqrt{7}} + \frac{1}{\sqrt{7} + \sqrt{8}} + \frac{1}{\sqrt{8} + \sqrt{9}}, \] we will rationalize each term and simplify the entire expression step by step. ### Step 1: Rationalize the first term The first term is \[ \frac{1}{\sqrt{3} + \sqrt{4}}. \] To rationalize it, we multiply the numerator and denominator by the conjugate of the denominator, which is \(\sqrt{3} - \sqrt{4}\): \[ \frac{1}{\sqrt{3} + \sqrt{4}} \cdot \frac{\sqrt{3} - \sqrt{4}}{\sqrt{3} - \sqrt{4}} = \frac{\sqrt{3} - \sqrt{4}}{(\sqrt{3})^2 - (\sqrt{4})^2} = \frac{\sqrt{3} - \sqrt{4}}{3 - 4} = \frac{\sqrt{3} - \sqrt{4}}{-1} = \sqrt{4} - \sqrt{3} = 2 - \sqrt{3}. \] ### Step 2: Rationalize the second term The second term is \[ \frac{1}{\sqrt{4} + \sqrt{5}}. \] Rationalizing gives: \[ \frac{1}{\sqrt{4} + \sqrt{5}} \cdot \frac{\sqrt{4} - \sqrt{5}}{\sqrt{4} - \sqrt{5}} = \frac{\sqrt{4} - \sqrt{5}}{(\sqrt{4})^2 - (\sqrt{5})^2} = \frac{\sqrt{4} - \sqrt{5}}{4 - 5} = \frac{\sqrt{4} - \sqrt{5}}{-1} = \sqrt{5} - \sqrt{4} = \sqrt{5} - 2. \] ### Step 3: Rationalize the third term The third term is \[ \frac{1}{\sqrt{5} + \sqrt{6}}. \] Rationalizing gives: \[ \frac{1}{\sqrt{5} + \sqrt{6}} \cdot \frac{\sqrt{5} - \sqrt{6}}{\sqrt{5} - \sqrt{6}} = \frac{\sqrt{5} - \sqrt{6}}{(\sqrt{5})^2 - (\sqrt{6})^2} = \frac{\sqrt{5} - \sqrt{6}}{5 - 6} = \frac{\sqrt{5} - \sqrt{6}}{-1} = \sqrt{6} - \sqrt{5}. \] ### Step 4: Rationalize the fourth term The fourth term is \[ \frac{1}{\sqrt{6} + \sqrt{7}}. \] Rationalizing gives: \[ \frac{1}{\sqrt{6} + \sqrt{7}} \cdot \frac{\sqrt{6} - \sqrt{7}}{\sqrt{6} - \sqrt{7}} = \frac{\sqrt{6} - \sqrt{7}}{(\sqrt{6})^2 - (\sqrt{7})^2} = \frac{\sqrt{6} - \sqrt{7}}{6 - 7} = \frac{\sqrt{6} - \sqrt{7}}{-1} = \sqrt{7} - \sqrt{6}. \] ### Step 5: Rationalize the fifth term The fifth term is \[ \frac{1}{\sqrt{7} + \sqrt{8}}. \] Rationalizing gives: \[ \frac{1}{\sqrt{7} + \sqrt{8}} \cdot \frac{\sqrt{7} - \sqrt{8}}{\sqrt{7} - \sqrt{8}} = \frac{\sqrt{7} - \sqrt{8}}{(\sqrt{7})^2 - (\sqrt{8})^2} = \frac{\sqrt{7} - \sqrt{8}}{7 - 8} = \frac{\sqrt{7} - \sqrt{8}}{-1} = \sqrt{8} - \sqrt{7}. \] ### Step 6: Rationalize the sixth term The sixth term is \[ \frac{1}{\sqrt{8} + \sqrt{9}}. \] Rationalizing gives: \[ \frac{1}{\sqrt{8} + \sqrt{9}} \cdot \frac{\sqrt{8} - \sqrt{9}}{\sqrt{8} - \sqrt{9}} = \frac{\sqrt{8} - \sqrt{9}}{(\sqrt{8})^2 - (\sqrt{9})^2} = \frac{\sqrt{8} - \sqrt{9}}{8 - 9} = \frac{\sqrt{8} - \sqrt{9}}{-1} = \sqrt{9} - \sqrt{8} = 3 - \sqrt{8}. \] ### Step 7: Combine all terms Now we combine all the results: \[ (2 - \sqrt{3}) + (\sqrt{5} - 2) + (\sqrt{6} - \sqrt{5}) + (\sqrt{7} - \sqrt{6}) + (\sqrt{8} - \sqrt{7}) + (3 - \sqrt{8}). \] Notice that all intermediate terms cancel out: - \(-2\) and \(+2\) cancel. - \(-\sqrt{5}\) and \(+\sqrt{5}\) cancel. - \(-\sqrt{6}\) and \(+\sqrt{6}\) cancel. - \(-\sqrt{7}\) and \(+\sqrt{7}\) cancel. - \(-\sqrt{8}\) and \(+\sqrt{8}\) cancel. What remains is: \[ 3 - \sqrt{3}. \] ### Final Answer Thus, the value of the entire expression is \[ 3 - \sqrt{3}. \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

1/(sqrt7 - sqrt6)

1/(sqrt7 - sqrt6)

1/(sqrt7 - sqrt6)

Prove that: 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+1/(sqrt(4)+sqrt(5))+1/(sqrt(5)+sqrt(6))+1/(sqrt(6)+sqrt(7))+1/(sqrt(7)+sqrt(8))+1/(sqrt(8)+sqrt(9)) = 2

1/(sqrt7+sqrt6-sqrt13)=

(sqrt7-sqrt6)/(sqrt7+sqrt6)-(sqrt7+sqrt6)/(sqrt7-sqrt6)=

Simplify 1/sqrt2+1/(sqrt2+sqrt4)+1/(sqrt4+sqrt6)+1/(sqrt6+sqrt8)

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

MOTHERS-NUMBER SYSTEM-O
  1. The value of sqrt(((sqrt12-sqrt8)(sqrt3+sqrt2))/(5+sqrt(24))) is-

    Text Solution

    |

  2. (sqrt5)/(sqrt3+sqrt2)-(3sqrt3)/(sqrt5+sqrt2)+(2sqrt2)/(sqrt5+sqrt3) is...

    Text Solution

    |

  3. 1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)+1/(sqrt6+sqrt7)+1/(sqr...

    Text Solution

    |

  4. Simplify 1/(sqrt(100)-sqrt(99))-1/(sqrt(99)-sqrt(98))+1/(sqrt(98)-sq...

    Text Solution

    |

  5. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  6. (3sqrt2)/(sqrt6+sqrt3)-(2sqrt6)/(sqrt3+1)+(2sqrt3)/(sqrt6+2) is equal ...

    Text Solution

    |

  7. If x=1+sqrt(2)+sqrt(3), then the value of (x+(1)/(x-1)) is

    Text Solution

    |

  8. If a, b are rational numbers and asqrtbsqrt3=sqrt(98)+sqrt(108)-sqrt(4...

    Text Solution

    |

  9. If root(3)(a)=root(3)(26)+root(3)(7)+root(3)(63), then-

    Text Solution

    |

  10. The value of sqrt(2^3sqrt(4sqrt(2^3sqrt(4.........)))) is-

    Text Solution

    |

  11. If (3x - 2y) : (2x + 3y) = 5 : 6 then the value of ((root(3)(x)+root(3...

    Text Solution

    |

  12. If 11sqrtn=sqrt(112)+sqrt(343), then value of n is?

    Text Solution

    |

  13. If sqrt(x+2sqrt(x+2sqrt(x+2sqrt(x+2)))).....oo=x Then value of x?

    Text Solution

    |

  14. Which is the correct statement :-

    Text Solution

    |

  15. Value of sqrt(7sqrt(7sqrt(7sqrt(7))))......

    Text Solution

    |

  16. Find the value of sqrt(12-sqrt(12-sqrt(12-...)))

    Text Solution

    |

  17. root(4)((0.00002025)/(0.00005329)) is equal to

    Text Solution

    |

  18. The value of sqrt(21+root(3)(59+sqrt(16+root(3)(722+sqrt(49))))) is-

    Text Solution

    |

  19. 3root(3)(32)-5root(3)(4)+root(3)(500) is equal to

    Text Solution

    |

  20. root(3)((72.9)/(0.4096)) is equal to

    Text Solution

    |