Home
Class 14
MATHS
Simplify 1/(sqrt(100)-sqrt(99))-1/(sqr...

Simplify
`1/(sqrt(100)-sqrt(99))-1/(sqrt(99)-sqrt(98))+1/(sqrt(98)-sqrt(97))-1/(sqrt(97)-sqrt(96))+........+1/(sqrt(2)-sqrt1)`

A

10

B

9

C

13

D

11

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ S = \frac{1}{\sqrt{100} - \sqrt{99}} - \frac{1}{\sqrt{99} - \sqrt{98}} + \frac{1}{\sqrt{98} - \sqrt{97}} - \frac{1}{\sqrt{97} - \sqrt{96}} + \ldots + \frac{1}{\sqrt{2} - \sqrt{1}} \] we will rationalize each term in the series. ### Step 1: Rationalize Each Term Let's start with the first term: \[ \frac{1}{\sqrt{100} - \sqrt{99}} \] To rationalize, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{\sqrt{100} - \sqrt{99}} \cdot \frac{\sqrt{100} + \sqrt{99}}{\sqrt{100} + \sqrt{99}} = \frac{\sqrt{100} + \sqrt{99}}{100 - 99} = \sqrt{100} + \sqrt{99} \] This simplifies to: \[ 10 + \sqrt{99} \] ### Step 2: Continue Rationalizing the Next Terms Now, let's rationalize the second term: \[ -\frac{1}{\sqrt{99} - \sqrt{98}} \cdot \frac{\sqrt{99} + \sqrt{98}}{\sqrt{99} + \sqrt{98}} = -\frac{\sqrt{99} + \sqrt{98}}{99 - 98} = -(\sqrt{99} + \sqrt{98}) \] This simplifies to: \[ -(\sqrt{99} + \sqrt{98}) \] ### Step 3: Combine the First Two Terms Now we can combine the first two terms: \[ (10 + \sqrt{99}) - (\sqrt{99} + \sqrt{98}) = 10 - \sqrt{98} \] ### Step 4: Continue with the Remaining Terms Following this pattern, we can rationalize the next terms similarly: \[ \frac{1}{\sqrt{98} - \sqrt{97}} = \sqrt{98} + \sqrt{97} \] \[ -\frac{1}{\sqrt{97} - \sqrt{96}} = -(\sqrt{97} + \sqrt{96}) \] Continuing this process, we will see that each positive term cancels with the negative term that follows it. ### Step 5: Recognize the Cancellation Pattern Notice that each term cancels out with the subsequent term: \[ S = (10 + \sqrt{99}) - (\sqrt{99} + \sqrt{98}) + (\sqrt{98} + \sqrt{97}) - (\sqrt{97} + \sqrt{96}) + \ldots - (\sqrt{2} - \sqrt{1}) \] All terms cancel except for the very first term \(10\) and the last term \(-\sqrt{1}\). ### Final Step: Simplify the Remaining Expression Thus, we have: \[ S = 10 - 1 = 9 \] ### Conclusion The simplified expression is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

( Simplify: )/(sqrt(100)-sqrt(99))-(1)/(sqrt(99)-sqrt(98))+(1)/(sqrt(98)-sqrt(97))-(1)/(sqrt(97)-sqrt(96))+backslash+(1)/(sqrt(2)-sqrt(1))

(1)/(sqrt(7)-sqrt(2))-(1)/(sqrt(7)+sqrt(2))=

Simplify : sqrt(50) -sqrt(98)

1/(1-sqrt(2))+ 1/(sqrt(2)-sqrt(3))+1/(sqrt(3)-sqrt(4))+..........+1/(sqrt(8)-sqrt(9))

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

(1)/(sqrt(9)-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-sqrt(4))=?

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

Simplify: 2sqrt(50)-3sqrt(98)+(1)/(3)sqrt(162)

MOTHERS-NUMBER SYSTEM-O
  1. (sqrt5)/(sqrt3+sqrt2)-(3sqrt3)/(sqrt5+sqrt2)+(2sqrt2)/(sqrt5+sqrt3) is...

    Text Solution

    |

  2. 1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)+1/(sqrt6+sqrt7)+1/(sqr...

    Text Solution

    |

  3. Simplify 1/(sqrt(100)-sqrt(99))-1/(sqrt(99)-sqrt(98))+1/(sqrt(98)-sq...

    Text Solution

    |

  4. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  5. (3sqrt2)/(sqrt6+sqrt3)-(2sqrt6)/(sqrt3+1)+(2sqrt3)/(sqrt6+2) is equal ...

    Text Solution

    |

  6. If x=1+sqrt(2)+sqrt(3), then the value of (x+(1)/(x-1)) is

    Text Solution

    |

  7. If a, b are rational numbers and asqrtbsqrt3=sqrt(98)+sqrt(108)-sqrt(4...

    Text Solution

    |

  8. If root(3)(a)=root(3)(26)+root(3)(7)+root(3)(63), then-

    Text Solution

    |

  9. The value of sqrt(2^3sqrt(4sqrt(2^3sqrt(4.........)))) is-

    Text Solution

    |

  10. If (3x - 2y) : (2x + 3y) = 5 : 6 then the value of ((root(3)(x)+root(3...

    Text Solution

    |

  11. If 11sqrtn=sqrt(112)+sqrt(343), then value of n is?

    Text Solution

    |

  12. If sqrt(x+2sqrt(x+2sqrt(x+2sqrt(x+2)))).....oo=x Then value of x?

    Text Solution

    |

  13. Which is the correct statement :-

    Text Solution

    |

  14. Value of sqrt(7sqrt(7sqrt(7sqrt(7))))......

    Text Solution

    |

  15. Find the value of sqrt(12-sqrt(12-sqrt(12-...)))

    Text Solution

    |

  16. root(4)((0.00002025)/(0.00005329)) is equal to

    Text Solution

    |

  17. The value of sqrt(21+root(3)(59+sqrt(16+root(3)(722+sqrt(49))))) is-

    Text Solution

    |

  18. 3root(3)(32)-5root(3)(4)+root(3)(500) is equal to

    Text Solution

    |

  19. root(3)((72.9)/(0.4096)) is equal to

    Text Solution

    |

  20. The value of (sqrt(80) - sqrt(112))/(sqrt(45) - sqrt(63)) is :

    Text Solution

    |