Home
Class 14
MATHS
If (3x - 2y) : (2x + 3y) = 5 : 6 then th...

If (3x - 2y) : (2x + 3y) = 5 : 6 then the value of `((root(3)(x)+root(3)(y))/(root(3)(x)-root(3)(y)))` is-

A

`1/25`

B

5

C

`1/5`

D

25

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(\frac{\sqrt[3]{x} + \sqrt[3]{y}}{\sqrt[3]{x} - \sqrt[3]{y}}\) given that \((3x - 2y) : (2x + 3y) = 5 : 6\). ### Step-by-Step Solution 1. **Set up the equation from the ratio**: \[ \frac{3x - 2y}{2x + 3y} = \frac{5}{6} \] 2. **Cross-multiply to eliminate the fraction**: \[ 6(3x - 2y) = 5(2x + 3y) \] 3. **Distribute both sides**: \[ 18x - 12y = 10x + 15y \] 4. **Rearrange the equation**: - Move all terms involving \(x\) to one side and all terms involving \(y\) to the other side: \[ 18x - 10x = 15y + 12y \] \[ 8x = 27y \] 5. **Express \(x\) in terms of \(y\)**: \[ \frac{x}{y} = \frac{27}{8} \] 6. **Let \(x = 27k\) and \(y = 8k\)** for some constant \(k\). 7. **Substitute \(x\) and \(y\) into the expression**: \[ \frac{\sqrt[3]{x} + \sqrt[3]{y}}{\sqrt[3]{x} - \sqrt[3]{y}} = \frac{\sqrt[3]{27k} + \sqrt[3]{8k}}{\sqrt[3]{27k} - \sqrt[3]{8k}} \] 8. **Calculate the cube roots**: \[ \sqrt[3]{27k} = 3\sqrt[3]{k}, \quad \sqrt[3]{8k} = 2\sqrt[3]{k} \] 9. **Substitute these values back into the expression**: \[ \frac{3\sqrt[3]{k} + 2\sqrt[3]{k}}{3\sqrt[3]{k} - 2\sqrt[3]{k}} = \frac{(3 + 2)\sqrt[3]{k}}{(3 - 2)\sqrt[3]{k}} = \frac{5\sqrt[3]{k}}{1\sqrt[3]{k}} = 5 \] ### Final Answer The value of \(\frac{\sqrt[3]{x} + \sqrt[3]{y}}{\sqrt[3]{x} - \sqrt[3]{y}}\) is **5**.
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x rarr1)(root(1 3)(x)-root(7)(x))/(root(5)(x)-root(3)(x))

root(3)(x^(2))+root(3)(x^(2))=3

The value of lim_(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

Simplify root(5)(x^(4)root(4)(x^(3)root(3)(x^(2)sqrt(x))))

For x>0 , root(3)(x)times root(3)(x)times root(3)(x)=

root(3)((x-4)(x-6))>2