Home
Class 14
MATHS
root(4)((0.00002025)/(0.00005329)) is eq...

`root(4)((0.00002025)/(0.00005329))` is equal to

A

`sqrt(45/73)`

B

`sqrt(43/75)`

C

`sqrt(34/57)`

D

`sqrt(73/45)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt[4]{\frac{0.00002025}{0.00005329}} \), we can follow these steps: ### Step 1: Simplify the fraction First, we can rewrite the fraction in a more manageable form by removing the decimal points. \[ \frac{0.00002025}{0.00005329} = \frac{2025}{5329} \] ### Step 2: Factor the numerator and denominator Next, we need to factor both the numerator and the denominator. The numerator \( 2025 \) can be factored as follows: \[ 2025 = 45^2 = (3^2 \cdot 5)^2 = 3^4 \cdot 5^2 \] The denominator \( 5329 \) can be factored as: \[ 5329 = 73^2 \] ### Step 3: Rewrite the expression Now we can rewrite the expression using these factors: \[ \frac{2025}{5329} = \frac{3^4 \cdot 5^2}{73^2} \] ### Step 4: Apply the fourth root Now we apply the fourth root to the entire fraction: \[ \sqrt[4]{\frac{3^4 \cdot 5^2}{73^2}} = \frac{\sqrt[4]{3^4} \cdot \sqrt[4]{5^2}}{\sqrt[4]{73^2}} \] ### Step 5: Simplify the roots Now we simplify each part: \[ \sqrt[4]{3^4} = 3, \quad \sqrt[4]{5^2} = 5^{1/2} = \sqrt{5}, \quad \sqrt[4]{73^2} = 73^{1/2} = \sqrt{73} \] Putting it all together, we have: \[ \frac{3 \cdot \sqrt{5}}{\sqrt{73}} \] ### Step 6: Final expression Thus, the final expression is: \[ \sqrt[4]{\frac{0.00002025}{0.00005329}} = \frac{3 \sqrt{5}}{\sqrt{73}} \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

root(3)((0.000064)) is equal to

root3(72.9/0.4096) is equal to :

The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

lim_(x rarr0)(root(3)(1+x^(2))-root(4)(1-2x))/(x+x^(2)) is equal to

root3 sqrt0.000064 is equal