Home
Class 14
MATHS
If x = 8 + 2sqrt(15) , find sqrtx+1/(sqr...

If x = `8 + 2sqrt(15)` , find `sqrtx+1/(sqrtx)`

A

`2sqrt3`

B

`2sqrt5`

C

`3/2sqrt5+(sqrt3)/2`

D

`(sqrt5)/2+(sqrt3)/(2)sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( \sqrt{x} + \frac{1}{\sqrt{x}} \) given that \( x = 8 + 2\sqrt{15} \). ### Step-by-Step Solution: 1. **Find \( \sqrt{x} \)**: We start with \( x = 8 + 2\sqrt{15} \). We need to express \( \sqrt{x} \) in a simpler form. We can assume that \( \sqrt{x} = \sqrt{a} + \sqrt{b} \) for some \( a \) and \( b \). We want: \[ (\sqrt{a} + \sqrt{b})^2 = a + b + 2\sqrt{ab} = 8 + 2\sqrt{15} \] This gives us two equations: - \( a + b = 8 \) - \( 2\sqrt{ab} = 2\sqrt{15} \) which simplifies to \( \sqrt{ab} = \sqrt{15} \) or \( ab = 15 \). 2. **Solve the system of equations**: We have: \[ a + b = 8 \] \[ ab = 15 \] We can treat \( a \) and \( b \) as the roots of the quadratic equation \( t^2 - (a+b)t + ab = 0 \): \[ t^2 - 8t + 15 = 0 \] Using the quadratic formula: \[ t = \frac{8 \pm \sqrt{8^2 - 4 \cdot 1 \cdot 15}}{2 \cdot 1} = \frac{8 \pm \sqrt{64 - 60}}{2} = \frac{8 \pm \sqrt{4}}{2} = \frac{8 \pm 2}{2} \] This gives us: \[ t = \frac{10}{2} = 5 \quad \text{and} \quad t = \frac{6}{2} = 3 \] Thus, \( a = 5 \) and \( b = 3 \) (or vice versa). 3. **Find \( \sqrt{x} \)**: Therefore, we have: \[ \sqrt{x} = \sqrt{5} + \sqrt{3} \] 4. **Find \( \frac{1}{\sqrt{x}} \)**: We need to calculate \( \frac{1}{\sqrt{x}} \): \[ \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{5} + \sqrt{3}} \] To simplify, we multiply the numerator and denominator by the conjugate: \[ \frac{1}{\sqrt{5} + \sqrt{3}} \cdot \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} - \sqrt{3}} = \frac{\sqrt{5} - \sqrt{3}}{(\sqrt{5})^2 - (\sqrt{3})^2} = \frac{\sqrt{5} - \sqrt{3}}{5 - 3} = \frac{\sqrt{5} - \sqrt{3}}{2} \] 5. **Combine \( \sqrt{x} \) and \( \frac{1}{\sqrt{x}} \)**: Now we can find \( \sqrt{x} + \frac{1}{\sqrt{x}} \): \[ \sqrt{x} + \frac{1}{\sqrt{x}} = \left(\sqrt{5} + \sqrt{3}\right) + \left(\frac{\sqrt{5} - \sqrt{3}}{2}\right) \] To combine these, we need a common denominator: \[ = \frac{2(\sqrt{5} + \sqrt{3}) + (\sqrt{5} - \sqrt{3})}{2} = \frac{2\sqrt{5} + 2\sqrt{3} + \sqrt{5} - \sqrt{3}}{2} = \frac{(2\sqrt{5} + \sqrt{5}) + (2\sqrt{3} - \sqrt{3})}{2} \] \[ = \frac{3\sqrt{5} + \sqrt{3}}{2} \] ### Final Answer: Thus, the final result is: \[ \sqrt{x} + \frac{1}{\sqrt{x}} = \frac{3\sqrt{5} + \sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

y = sqrt(1+sqrtx)

y = x+sqrtx+1/sqrtx

f(x)=sqrtx-(1)/(sqrtx)

y = sqrt(2 -sqrtx)

If x = 3 + 2 sqrt2 , find the value sqrtx - (1)/(sqrtx)

If x=7+sqrt(40) ,then sqrtx+1/sqrtx=

If x=(3+2sqrt2) then (sqrtx-1/sqrtx)=

Intergrate the following with respect to x (i) 3sqrt(x^5) (ii) sqrtx - (1)/(sqrtx) (iii) (sqrtx + (1)/(x) )^2

If x=5+2sqrt6 then sqrtx+1/sqrtx=

MOTHERS-NUMBER SYSTEM-O
  1. Simplify ((3/(2+sqrt3)-2/(2-sqrt3)))/(2-5sqrt3)

    Text Solution

    |

  2. The value of sqrt(11+2sqrt(30))-1/(sqrt(11+2sqrt(30))) is

    Text Solution

    |

  3. If x = 8 + 2sqrt(15) , find sqrtx+1/(sqrtx)

    Text Solution

    |

  4. Which no. is the greatest number from the following: root(3)(4),root...

    Text Solution

    |

  5. ((1+sqrt2)/(sqrt5+sqrt3)+(1-sqrt2)/(sqrt5-sqrt3)) Simplify

    Text Solution

    |

  6. The value of ((sqrt5+sqrt3)/(sqrt5-sqrt3))^2+((sqrt5-sqrt3)/(sqrt5+sqr...

    Text Solution

    |

  7. The smallest no. in the following is (0.5)^2,sqrt(0.49),root(3)(0.008)...

    Text Solution

    |

  8. Arrange the following no. in ascending order (2.89)^(0.5),2-(0.5)^2,sq...

    Text Solution

    |

  9. Find the value of 1/(sqrt(9) - sqrt(4)).

    Text Solution

    |

  10. The simplification of (3sqrt2)/(sqrt3+sqrt6)-(4sqrt3)/(sqrt6+sqrt2)...

    Text Solution

    |

  11. The square root of (3-sqrt5) is

    Text Solution

    |

  12. If x= sqrt(-sqrt3+ sqrt(3+8 sqrt(7+4 sqrt3))) where x>0, then the valu...

    Text Solution

    |

  13. The value of (3+2sqrt2)^(-3)+(3-2sqrt2)^(-3) is equal to

    Text Solution

    |

  14. Find the value of sqrt8+2sqrt(32)-3sqrt(128)+4sqrt(50) if sqrt2=1.414 ...

    Text Solution

    |

  15. The simplification of [1/(sqrt2+sqrt3-sqrt5)+1/(sqrt2-sqrt3-sqrt5)] ...

    Text Solution

    |

  16. If a=sqrt8-sqrt7,b=sqrt7-sqrt6 and c=sqrt6-sqrt5 then which answer is ...

    Text Solution

    |

  17. If a= (sqrt5+1)/(sqrt5-1) and b=(sqrt5-1)/(sqrt5+1) then the value of ...

    Text Solution

    |

  18. 1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)+1/(sqrt6+sqrt7)+1/(sqr...

    Text Solution

    |

  19. If sqrt(32)+sqrt(72)=14.14 then sqrt(18)+sqrt(50)+sqrt(98)+sqrt(1250)=...

    Text Solution

    |

  20. 1/30+1/42+1/56+1/72+1/90+1/110=?

    Text Solution

    |