Home
Class 14
MATHS
The value of ((sqrt5+sqrt3)/(sqrt5-sqrt3...

The value of `((sqrt5+sqrt3)/(sqrt5-sqrt3))^2+((sqrt5-sqrt3)/(sqrt5+sqrt3))^2` is equal to

A

64

B

62

C

66

D

68

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\right)^2 + \left(\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\right)^2\), we can follow these steps: ### Step 1: Let \( A = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \) and \( B = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} \) We need to find \( A^2 + B^2 \). ### Step 2: Use the identity \( A^2 + B^2 = (A + B)^2 - 2AB \) To use this identity, we first need to calculate \( A + B \) and \( AB \). ### Step 3: Calculate \( A + B \) \[ A + B = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} + \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} \] To add these fractions, we find a common denominator: \[ A + B = \frac{(\sqrt{5} + \sqrt{3})^2 + (\sqrt{5} - \sqrt{3})^2}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})} \] ### Step 4: Calculate the numerator Calculating the squares: \[ (\sqrt{5} + \sqrt{3})^2 = 5 + 3 + 2\sqrt{15} = 8 + 2\sqrt{15} \] \[ (\sqrt{5} - \sqrt{3})^2 = 5 + 3 - 2\sqrt{15} = 8 - 2\sqrt{15} \] Adding these: \[ A + B = \frac{(8 + 2\sqrt{15}) + (8 - 2\sqrt{15})}{(\sqrt{5})^2 - (\sqrt{3})^2} = \frac{16}{2} = 8 \] ### Step 5: Calculate \( AB \) \[ AB = \left(\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\right) \left(\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\right) = \frac{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})} \] This simplifies to: \[ AB = \frac{5 - 3}{2} = 1 \] ### Step 6: Substitute back into the identity Now we substitute \( A + B \) and \( AB \) into the identity: \[ A^2 + B^2 = (A + B)^2 - 2AB = 8^2 - 2 \cdot 1 = 64 - 2 = 62 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{62} \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

(sqrt3-sqrt5)(sqrt5+sqrt3)

What is (sqrt5+sqrt3)/(sqrt5-sqrt3)+(sqrt5-sqrt3)/(sqrt5+sqrt3) equal to

(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)) Is equal to :

Show that (sqrt5+sqrt3)/(sqrt5-sqrt3)-(sqrt5-sqrt3)/(sqrt5+sqrt3)=2sqrt15

(sqrt5+sqrt2)(sqrt3+sqrt2)

(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

3/(sqrt3 - sqrt5)

The value of [sqrt2]+[sqrt3]+[sqrt5]

MOTHERS-NUMBER SYSTEM-O
  1. Which no. is the greatest number from the following: root(3)(4),root...

    Text Solution

    |

  2. ((1+sqrt2)/(sqrt5+sqrt3)+(1-sqrt2)/(sqrt5-sqrt3)) Simplify

    Text Solution

    |

  3. The value of ((sqrt5+sqrt3)/(sqrt5-sqrt3))^2+((sqrt5-sqrt3)/(sqrt5+sqr...

    Text Solution

    |

  4. The smallest no. in the following is (0.5)^2,sqrt(0.49),root(3)(0.008)...

    Text Solution

    |

  5. Arrange the following no. in ascending order (2.89)^(0.5),2-(0.5)^2,sq...

    Text Solution

    |

  6. Find the value of 1/(sqrt(9) - sqrt(4)).

    Text Solution

    |

  7. The simplification of (3sqrt2)/(sqrt3+sqrt6)-(4sqrt3)/(sqrt6+sqrt2)...

    Text Solution

    |

  8. The square root of (3-sqrt5) is

    Text Solution

    |

  9. If x= sqrt(-sqrt3+ sqrt(3+8 sqrt(7+4 sqrt3))) where x>0, then the valu...

    Text Solution

    |

  10. The value of (3+2sqrt2)^(-3)+(3-2sqrt2)^(-3) is equal to

    Text Solution

    |

  11. Find the value of sqrt8+2sqrt(32)-3sqrt(128)+4sqrt(50) if sqrt2=1.414 ...

    Text Solution

    |

  12. The simplification of [1/(sqrt2+sqrt3-sqrt5)+1/(sqrt2-sqrt3-sqrt5)] ...

    Text Solution

    |

  13. If a=sqrt8-sqrt7,b=sqrt7-sqrt6 and c=sqrt6-sqrt5 then which answer is ...

    Text Solution

    |

  14. If a= (sqrt5+1)/(sqrt5-1) and b=(sqrt5-1)/(sqrt5+1) then the value of ...

    Text Solution

    |

  15. 1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)+1/(sqrt6+sqrt7)+1/(sqr...

    Text Solution

    |

  16. If sqrt(32)+sqrt(72)=14.14 then sqrt(18)+sqrt(50)+sqrt(98)+sqrt(1250)=...

    Text Solution

    |

  17. 1/30+1/42+1/56+1/72+1/90+1/110=?

    Text Solution

    |

  18. (2-1/3)(2-3/5)(2-5/7).......(2-997/999)=?

    Text Solution

    |

  19. Arrange (4)/(5), (7)/(8), (6)/(7), (5)/(6) in the ascending order :

    Text Solution

    |

  20. Arrange 3/5,7/9,11/13 in descending order.

    Text Solution

    |