Home
Class 14
MATHS
The simplification of (3sqrt2)/(sqrt3...

The simplification of
`(3sqrt2)/(sqrt3+sqrt6)-(4sqrt3)/(sqrt6+sqrt2)+(sqrt6)/(sqrt2+sqrt3)` is

A

a)`sqrt6`

B

b)`sqrt3`

C

c)`sqrt2`

D

d)6`sqrt2` - 2`sqrt6`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}} - \frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}} + \frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}, \] we will rationalize the denominators and combine the fractions step by step. ### Step 1: Rationalize the first term We start with the first term: \[ \frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}. \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator, which is \(\sqrt{3} - \sqrt{6}\): \[ \frac{3\sqrt{2}(\sqrt{3} - \sqrt{6})}{(\sqrt{3}+\sqrt{6})(\sqrt{3}-\sqrt{6})}. \] Calculating the denominator: \[ (\sqrt{3})^2 - (\sqrt{6})^2 = 3 - 6 = -3. \] Thus, the first term becomes: \[ \frac{3\sqrt{2}(\sqrt{3} - \sqrt{6})}{-3} = -\sqrt{2}(\sqrt{3} - \sqrt{6}) = -\sqrt{6} + \sqrt{6}. \] ### Step 2: Rationalize the second term Next, we simplify the second term: \[ -\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}. \] Again, we multiply by the conjugate \(\sqrt{6} - \sqrt{2}\): \[ -\frac{4\sqrt{3}(\sqrt{6} - \sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}. \] Calculating the denominator: \[ (\sqrt{6})^2 - (\sqrt{2})^2 = 6 - 2 = 4. \] Thus, the second term becomes: \[ -\frac{4\sqrt{3}(\sqrt{6} - \sqrt{2})}{4} = -\sqrt{3}(\sqrt{6} - \sqrt{2}) = -\sqrt{18} + \sqrt{6} = -3\sqrt{2} + \sqrt{6}. \] ### Step 3: Simplify the third term Now, we simplify the third term: \[ \frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}. \] We multiply by the conjugate \(\sqrt{2} - \sqrt{3}\): \[ \frac{\sqrt{6}(\sqrt{2} - \sqrt{3})}{(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})}. \] Calculating the denominator: \[ (\sqrt{2})^2 - (\sqrt{3})^2 = 2 - 3 = -1. \] Thus, the third term becomes: \[ -\sqrt{6}(\sqrt{2} - \sqrt{3}) = -\sqrt{12} + \sqrt{18} = -2\sqrt{3} + 3\sqrt{2}. \] ### Step 4: Combine all terms Now we combine all three terms: 1. From the first term: \(-\sqrt{6} + \sqrt{6}\) 2. From the second term: \(-3\sqrt{2} + \sqrt{6}\) 3. From the third term: \(-2\sqrt{3} + 3\sqrt{2}\) Combining these, we have: \[ (-\sqrt{6} + \sqrt{6}) + (-3\sqrt{2} + 3\sqrt{2}) - 2\sqrt{3} = -2\sqrt{3}. \] ### Final Answer Thus, the simplified expression is: \[ -\sqrt{2} + \sqrt{6} - 2\sqrt{3}. \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

[(3sqrt2)/(sqrt3 + sqrt6) - (4sqrt3)/(sqrt6 + sqrt2) + (sqrt6)/(sqrt2 + sqrt3)] is simplified to

(3sqrt(2))/(sqrt(3)+sqrt(6))-(4sqrt(3))/(sqrt(6)+sqrt(2))+(sqrt(6))/(sqrt(3)+sqrt(2))

(3sqrt2+sqrt3-sqrt6)/(2sqrt3-3sqrt2+sqrt6)=

(sqrt(2))/(sqrt(6)-sqrt(2))-(sqrt(3))/(sqrt(6)+sqrt(2))

Simplify (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

MOTHERS-NUMBER SYSTEM-O
  1. Arrange the following no. in ascending order (2.89)^(0.5),2-(0.5)^2,sq...

    Text Solution

    |

  2. Find the value of 1/(sqrt(9) - sqrt(4)).

    Text Solution

    |

  3. The simplification of (3sqrt2)/(sqrt3+sqrt6)-(4sqrt3)/(sqrt6+sqrt2)...

    Text Solution

    |

  4. The square root of (3-sqrt5) is

    Text Solution

    |

  5. If x= sqrt(-sqrt3+ sqrt(3+8 sqrt(7+4 sqrt3))) where x>0, then the valu...

    Text Solution

    |

  6. The value of (3+2sqrt2)^(-3)+(3-2sqrt2)^(-3) is equal to

    Text Solution

    |

  7. Find the value of sqrt8+2sqrt(32)-3sqrt(128)+4sqrt(50) if sqrt2=1.414 ...

    Text Solution

    |

  8. The simplification of [1/(sqrt2+sqrt3-sqrt5)+1/(sqrt2-sqrt3-sqrt5)] ...

    Text Solution

    |

  9. If a=sqrt8-sqrt7,b=sqrt7-sqrt6 and c=sqrt6-sqrt5 then which answer is ...

    Text Solution

    |

  10. If a= (sqrt5+1)/(sqrt5-1) and b=(sqrt5-1)/(sqrt5+1) then the value of ...

    Text Solution

    |

  11. 1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)+1/(sqrt6+sqrt7)+1/(sqr...

    Text Solution

    |

  12. If sqrt(32)+sqrt(72)=14.14 then sqrt(18)+sqrt(50)+sqrt(98)+sqrt(1250)=...

    Text Solution

    |

  13. 1/30+1/42+1/56+1/72+1/90+1/110=?

    Text Solution

    |

  14. (2-1/3)(2-3/5)(2-5/7).......(2-997/999)=?

    Text Solution

    |

  15. Arrange (4)/(5), (7)/(8), (6)/(7), (5)/(6) in the ascending order :

    Text Solution

    |

  16. Arrange 3/5,7/9,11/13 in descending order.

    Text Solution

    |

  17. Which of the following order of the fractions is in descending form?

    Text Solution

    |

  18. The simplification of (0.bar1)^2{1-9(0.1bar6)^2} is

    Text Solution

    |

  19. [(1-1/3)(1-1/4)(1-1/5)(1-1/6)....(1-1/99)(1-1/100)]=?

    Text Solution

    |

  20. (1-1/3)(1-1/4)(1-1/5)…(1-1/n) equals:

    Text Solution

    |