Home
Class 14
MATHS
The square root of (3-sqrt5) is...

The square root of `(3-sqrt5)` is

A

`(sqrt3-5^(1/4))`

B

`1/2(sqrt5-sqrt3)`

C

`1/2(sqrt5-1)`

D

`1/(sqrt2)(sqrt5-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the square root of the expression \(3 - \sqrt{5}\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt{3 - \sqrt{5}} \] ### Step 2: Rationalize the expression To simplify the square root, we can express \(3 - \sqrt{5}\) in a form that is easier to work with. We can multiply the numerator and denominator by a suitable expression to eliminate the square root in the denominator. Here, we will multiply by \(2\) to help rationalize it: \[ \sqrt{3 - \sqrt{5}} = \sqrt{\frac{(3 - \sqrt{5}) \cdot 2}{2}} = \frac{\sqrt{2(3 - \sqrt{5})}}{2} \] ### Step 3: Expand the numerator Now, we can expand the numerator: \[ 2(3 - \sqrt{5}) = 6 - 2\sqrt{5} \] So, we have: \[ \sqrt{3 - \sqrt{5}} = \frac{\sqrt{6 - 2\sqrt{5}}}{2} \] ### Step 4: Factor the expression under the square root Next, we can factor \(6 - 2\sqrt{5}\) into a perfect square. We can express it as: \[ 6 - 2\sqrt{5} = (\sqrt{a} - \sqrt{b})^2 \] where \(a + b = 6\) and \(2\sqrt{ab} = 2\sqrt{5}\). Solving these equations, we find \(a = 5\) and \(b = 1\). Thus: \[ 6 - 2\sqrt{5} = (\sqrt{5} - 1)^2 \] ### Step 5: Take the square root Now, we can take the square root: \[ \sqrt{6 - 2\sqrt{5}} = \sqrt{(\sqrt{5} - 1)^2} = \sqrt{5} - 1 \] ### Step 6: Final expression Putting it all together, we have: \[ \sqrt{3 - \sqrt{5}} = \frac{\sqrt{5} - 1}{2} \] ### Conclusion Thus, the square root of \(3 - \sqrt{5}\) is: \[ \frac{\sqrt{5} - 1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

The square root of 3+sqrt(5) is

The square root of (7 + 3sqrt5) (7 - 3sqrt5) is :

The square root of (7+3sqrt5) (7-3sqrt5) is (A) 4 (B) sqrt5 (C) 3sqrt5 (D) 2

The square root of 11-sqrt(120) is given by

The square root of 33 - 4 sqrt35 is :

Find the square root of (3+sqrt(5))

MOTHERS-NUMBER SYSTEM-O
  1. Find the value of 1/(sqrt(9) - sqrt(4)).

    Text Solution

    |

  2. The simplification of (3sqrt2)/(sqrt3+sqrt6)-(4sqrt3)/(sqrt6+sqrt2)...

    Text Solution

    |

  3. The square root of (3-sqrt5) is

    Text Solution

    |

  4. If x= sqrt(-sqrt3+ sqrt(3+8 sqrt(7+4 sqrt3))) where x>0, then the valu...

    Text Solution

    |

  5. The value of (3+2sqrt2)^(-3)+(3-2sqrt2)^(-3) is equal to

    Text Solution

    |

  6. Find the value of sqrt8+2sqrt(32)-3sqrt(128)+4sqrt(50) if sqrt2=1.414 ...

    Text Solution

    |

  7. The simplification of [1/(sqrt2+sqrt3-sqrt5)+1/(sqrt2-sqrt3-sqrt5)] ...

    Text Solution

    |

  8. If a=sqrt8-sqrt7,b=sqrt7-sqrt6 and c=sqrt6-sqrt5 then which answer is ...

    Text Solution

    |

  9. If a= (sqrt5+1)/(sqrt5-1) and b=(sqrt5-1)/(sqrt5+1) then the value of ...

    Text Solution

    |

  10. 1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)+1/(sqrt6+sqrt7)+1/(sqr...

    Text Solution

    |

  11. If sqrt(32)+sqrt(72)=14.14 then sqrt(18)+sqrt(50)+sqrt(98)+sqrt(1250)=...

    Text Solution

    |

  12. 1/30+1/42+1/56+1/72+1/90+1/110=?

    Text Solution

    |

  13. (2-1/3)(2-3/5)(2-5/7).......(2-997/999)=?

    Text Solution

    |

  14. Arrange (4)/(5), (7)/(8), (6)/(7), (5)/(6) in the ascending order :

    Text Solution

    |

  15. Arrange 3/5,7/9,11/13 in descending order.

    Text Solution

    |

  16. Which of the following order of the fractions is in descending form?

    Text Solution

    |

  17. The simplification of (0.bar1)^2{1-9(0.1bar6)^2} is

    Text Solution

    |

  18. [(1-1/3)(1-1/4)(1-1/5)(1-1/6)....(1-1/99)(1-1/100)]=?

    Text Solution

    |

  19. (1-1/3)(1-1/4)(1-1/5)…(1-1/n) equals:

    Text Solution

    |

  20. If 1^2+2^2+3^2+.....+x^2=((x)(x+1)(2x+1))/6, then the value of 1^2+3^2...

    Text Solution

    |