Home
Class 14
MATHS
The simplification of [1/(sqrt2+sqrt3-...

The simplification of
`[1/(sqrt2+sqrt3-sqrt5)+1/(sqrt2-sqrt3-sqrt5)]` is equal to

A

1

B

`sqrt2`

C

`1/(sqrt2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{1}{\sqrt{2} + \sqrt{3} - \sqrt{5}} + \frac{1}{\sqrt{2} - \sqrt{3} - \sqrt{5}}, \] we will follow these steps: ### Step 1: Find a common denominator The common denominator for the two fractions is \[ (\sqrt{2} + \sqrt{3} - \sqrt{5})(\sqrt{2} - \sqrt{3} - \sqrt{5}). \] ### Step 2: Rewrite the expression We can rewrite the expression using the common denominator: \[ \frac{(\sqrt{2} - \sqrt{3} - \sqrt{5}) + (\sqrt{2} + \sqrt{3} - \sqrt{5})}{(\sqrt{2} + \sqrt{3} - \sqrt{5})(\sqrt{2} - \sqrt{3} - \sqrt{5})}. \] ### Step 3: Simplify the numerator Now, simplify the numerator: \[ (\sqrt{2} - \sqrt{3} - \sqrt{5}) + (\sqrt{2} + \sqrt{3} - \sqrt{5}) = 2\sqrt{2} - 2\sqrt{5}. \] ### Step 4: Simplify the denominator Next, we simplify the denominator using the difference of squares: \[ (\sqrt{2})^2 - (\sqrt{5})^2 = 2 - 5 = -3. \] ### Step 5: Combine the results Now we can combine the results: \[ \frac{2\sqrt{2} - 2\sqrt{5}}{-3} = \frac{-2(\sqrt{2} - \sqrt{5})}{3}. \] ### Step 6: Factor out common terms We can factor out -2 from the numerator: \[ = -\frac{2}{3}(\sqrt{2} - \sqrt{5}). \] ### Step 7: Final simplification To express this in a simpler form, we can write: \[ = \frac{2(\sqrt{5} - \sqrt{2})}{3}. \] ### Conclusion The simplified form of the given expression is: \[ \frac{2(\sqrt{5} - \sqrt{2})}{3}. \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

(2sqrt3+sqrt5)(2sqrt3+sqrt5)

(2sqrt3 + sqrt5)(2sqrt3 - sqrt5)

1/(sqrt(2)+sqrt(3)+sqrt(5))+1/(sqrt(2)+sqrt(3)-sqrt(5))

2/(sqrt5 - sqrt3)

2/(sqrt5 - sqrt3)

2/(sqrt5 - sqrt3)

2/(sqrt5 - sqrt3)

2/(sqrt5 - sqrt3)

(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))

MOTHERS-NUMBER SYSTEM-O
  1. The value of (3+2sqrt2)^(-3)+(3-2sqrt2)^(-3) is equal to

    Text Solution

    |

  2. Find the value of sqrt8+2sqrt(32)-3sqrt(128)+4sqrt(50) if sqrt2=1.414 ...

    Text Solution

    |

  3. The simplification of [1/(sqrt2+sqrt3-sqrt5)+1/(sqrt2-sqrt3-sqrt5)] ...

    Text Solution

    |

  4. If a=sqrt8-sqrt7,b=sqrt7-sqrt6 and c=sqrt6-sqrt5 then which answer is ...

    Text Solution

    |

  5. If a= (sqrt5+1)/(sqrt5-1) and b=(sqrt5-1)/(sqrt5+1) then the value of ...

    Text Solution

    |

  6. 1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)+1/(sqrt6+sqrt7)+1/(sqr...

    Text Solution

    |

  7. If sqrt(32)+sqrt(72)=14.14 then sqrt(18)+sqrt(50)+sqrt(98)+sqrt(1250)=...

    Text Solution

    |

  8. 1/30+1/42+1/56+1/72+1/90+1/110=?

    Text Solution

    |

  9. (2-1/3)(2-3/5)(2-5/7).......(2-997/999)=?

    Text Solution

    |

  10. Arrange (4)/(5), (7)/(8), (6)/(7), (5)/(6) in the ascending order :

    Text Solution

    |

  11. Arrange 3/5,7/9,11/13 in descending order.

    Text Solution

    |

  12. Which of the following order of the fractions is in descending form?

    Text Solution

    |

  13. The simplification of (0.bar1)^2{1-9(0.1bar6)^2} is

    Text Solution

    |

  14. [(1-1/3)(1-1/4)(1-1/5)(1-1/6)....(1-1/99)(1-1/100)]=?

    Text Solution

    |

  15. (1-1/3)(1-1/4)(1-1/5)…(1-1/n) equals:

    Text Solution

    |

  16. If 1^2+2^2+3^2+.....+x^2=((x)(x+1)(2x+1))/6, then the value of 1^2+3^2...

    Text Solution

    |

  17. The value 5/(2^2. 3^2)+7/(3^2 .4^2)+9/(4^2. 5^2)+11/(5^2. 6^2)+13/(6^2...

    Text Solution

    |

  18. Find the sum of 1/9+1/6+1/12+1/20+1/30+1/42+1/56+1/72

    Text Solution

    |

  19. 1/3+1/15+1/35+1/63+1/99+1/143=?

    Text Solution

    |

  20. Find the sum of first five terms in the sequence 1/(1xx4)+1/(4xx7)+1...

    Text Solution

    |