Home
Class 14
MATHS
If sqrt(32)+sqrt(72)=14.14 then sqrt(18)...

If `sqrt(32)+sqrt(72)=14.14` then `sqrt(18)+sqrt(50)+sqrt(98)+sqrt(1250)`=?

A

45.45

B

56.56

C

67.67

D

78.78

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first simplify the square roots and then calculate the final result. ### Step 1: Simplify the square roots We need to express each square root in a simplified form. 1. **Calculate \( \sqrt{32} \)**: \[ \sqrt{32} = \sqrt{16 \times 2} = \sqrt{16} \cdot \sqrt{2} = 4\sqrt{2} \] 2. **Calculate \( \sqrt{72} \)**: \[ \sqrt{72} = \sqrt{36 \times 2} = \sqrt{36} \cdot \sqrt{2} = 6\sqrt{2} \] ### Step 2: Add the simplified square roots Now we add the two results: \[ \sqrt{32} + \sqrt{72} = 4\sqrt{2} + 6\sqrt{2} = (4 + 6)\sqrt{2} = 10\sqrt{2} \] ### Step 3: Set up the equation According to the problem, we know: \[ 10\sqrt{2} = 14.14 \] From this, we can find the value of \( \sqrt{2} \): \[ \sqrt{2} = \frac{14.14}{10} = 1.414 \] ### Step 4: Calculate the new expression Now we need to calculate \( \sqrt{18} + \sqrt{50} + \sqrt{98} + \sqrt{1250} \). 1. **Calculate \( \sqrt{18} \)**: \[ \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \cdot \sqrt{2} = 3\sqrt{2} \] 2. **Calculate \( \sqrt{50} \)**: \[ \sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \cdot \sqrt{2} = 5\sqrt{2} \] 3. **Calculate \( \sqrt{98} \)**: \[ \sqrt{98} = \sqrt{49 \times 2} = \sqrt{49} \cdot \sqrt{2} = 7\sqrt{2} \] 4. **Calculate \( \sqrt{1250} \)**: \[ \sqrt{1250} = \sqrt{25 \times 50} = \sqrt{25} \cdot \sqrt{50} = 5\sqrt{50} = 5\sqrt{25 \times 2} = 5 \cdot 5\sqrt{2} = 25\sqrt{2} \] ### Step 5: Combine all the square roots Now we can add these results together: \[ \sqrt{18} + \sqrt{50} + \sqrt{98} + \sqrt{1250} = 3\sqrt{2} + 5\sqrt{2} + 7\sqrt{2} + 25\sqrt{2} \] \[ = (3 + 5 + 7 + 25)\sqrt{2} = 40\sqrt{2} \] ### Step 6: Substitute the value of \( \sqrt{2} \) Now we substitute \( \sqrt{2} = 1.414 \): \[ 40\sqrt{2} = 40 \times 1.414 = 56.56 \] ### Final Answer Thus, the value of \( \sqrt{18} + \sqrt{50} + \sqrt{98} + \sqrt{1250} \) is: \[ \boxed{56.56} \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

(4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))

Simplify : sqrt(50) -sqrt(98)

If sqrt(2) = 1.414 then find the value of sqrt(8) + sqrt(50) + sqrt(72) + sqrt(98)

sqrt72 xx sqrt98= ?

MOTHERS-NUMBER SYSTEM-O
  1. If a= (sqrt5+1)/(sqrt5-1) and b=(sqrt5-1)/(sqrt5+1) then the value of ...

    Text Solution

    |

  2. 1/(sqrt3+sqrt4)+1/(sqrt4+sqrt5)+1/(sqrt5+sqrt6)+1/(sqrt6+sqrt7)+1/(sqr...

    Text Solution

    |

  3. If sqrt(32)+sqrt(72)=14.14 then sqrt(18)+sqrt(50)+sqrt(98)+sqrt(1250)=...

    Text Solution

    |

  4. 1/30+1/42+1/56+1/72+1/90+1/110=?

    Text Solution

    |

  5. (2-1/3)(2-3/5)(2-5/7).......(2-997/999)=?

    Text Solution

    |

  6. Arrange (4)/(5), (7)/(8), (6)/(7), (5)/(6) in the ascending order :

    Text Solution

    |

  7. Arrange 3/5,7/9,11/13 in descending order.

    Text Solution

    |

  8. Which of the following order of the fractions is in descending form?

    Text Solution

    |

  9. The simplification of (0.bar1)^2{1-9(0.1bar6)^2} is

    Text Solution

    |

  10. [(1-1/3)(1-1/4)(1-1/5)(1-1/6)....(1-1/99)(1-1/100)]=?

    Text Solution

    |

  11. (1-1/3)(1-1/4)(1-1/5)…(1-1/n) equals:

    Text Solution

    |

  12. If 1^2+2^2+3^2+.....+x^2=((x)(x+1)(2x+1))/6, then the value of 1^2+3^2...

    Text Solution

    |

  13. The value 5/(2^2. 3^2)+7/(3^2 .4^2)+9/(4^2. 5^2)+11/(5^2. 6^2)+13/(6^2...

    Text Solution

    |

  14. Find the sum of 1/9+1/6+1/12+1/20+1/30+1/42+1/56+1/72

    Text Solution

    |

  15. 1/3+1/15+1/35+1/63+1/99+1/143=?

    Text Solution

    |

  16. Find the sum of first five terms in the sequence 1/(1xx4)+1/(4xx7)+1...

    Text Solution

    |

  17. The value of (1+(1)/(2)) (1+(1)/(3))(1+(1)/(4))....(1+(1)/(120)) is

    Text Solution

    |

  18. The value of (5.42x5.42+5.42xx24)/(32.71xx32.71-27.29xx27.29)div(6.54x...

    Text Solution

    |

  19. The value of [(1xx3xx9+2xx6xx18+3xx9xx27+.....)/(1xx5xx25+2xx10xx50+3x...

    Text Solution

    |

  20. The simplification of (1.bar3xx1.bar3xx1.bar3-1)/(1.bar3xx1.bar3+1.bar...

    Text Solution

    |