Home
Class 14
MATHS
(2-1/3)(2-3/5)(2-5/7).......(2-997/999)=...

`(2-1/3)(2-3/5)(2-5/7).......(2-997/999)=?`

A

`5/999`

B

`1001/999`

C

`1001/3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((2 - \frac{1}{3})(2 - \frac{3}{5})(2 - \frac{5}{7}) \ldots (2 - \frac{997}{999})\), we will simplify each term step by step. ### Step 1: Rewrite Each Term Each term in the product can be rewritten as follows: \[ 2 - \frac{n}{m} = \frac{2m - n}{m} \] where \(n\) takes values from 1 to 997 and \(m\) takes values from 3 to 999 in odd increments. ### Step 2: Identify the Pattern The terms can be expressed as: - For \(n = 1\) and \(m = 3\): \(2 - \frac{1}{3} = \frac{6 - 1}{3} = \frac{5}{3}\) - For \(n = 3\) and \(m = 5\): \(2 - \frac{3}{5} = \frac{10 - 3}{5} = \frac{7}{5}\) - For \(n = 5\) and \(m = 7\): \(2 - \frac{5}{7} = \frac{14 - 5}{7} = \frac{9}{7}\) Continuing this pattern, we can generalize: \[ 2 - \frac{n}{m} = \frac{2m - n}{m} \] ### Step 3: Write the Full Product The full product can be expressed as: \[ \prod_{k=1}^{499} \left(2 - \frac{2k - 1}{2k + 1}\right) = \prod_{k=1}^{499} \frac{(2(2k + 1) - (2k - 1))}{(2k + 1)} = \prod_{k=1}^{499} \frac{(4k + 2 - 2k + 1)}{(2k + 1)} \] This simplifies to: \[ \prod_{k=1}^{499} \frac{(2k + 3)}{(2k + 1)} \] ### Step 4: Simplify the Product Notice that this product can be simplified: \[ \prod_{k=1}^{499} \frac{(2k + 3)}{(2k + 1)} = \frac{3}{1} \cdot \frac{5}{3} \cdot \frac{7}{5} \cdots \frac{999}{997} \] Most terms will cancel out, leaving: \[ \frac{1001}{3} \] ### Final Answer Thus, the value of the entire expression is: \[ \frac{1001}{3} \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

When simplified the product (2-(1)/(3) ) (2- (3)/(5) ) (2-(5)/(7)) ………… (2- (999)/(1001)) is equal to

(2-frac(1)(3))(2-frac(7)(5))(2-frac(997)(999)) is equal to

(1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+.....+(n^(2))/ ((2n-1)(2n+1))=((n)(n+1))/((2(2n+1)))

Find the sum of the infinite series (1.3)/(2)+(3.5)/(2^(2))+(5.7)/(2^(3))+(7.9)/(2^(4))+......oo

"(5)/(-7)+2(1)/(3)+4(2)/(5)

Let a=(1^(2))/(1)+(2^(2))/(3)+(3^(2))/(5)+...+((1001)^(2))/(2001),b=(1^(2))/(3)+(2^(2))/(5)+(3^(2))/(7)+...+((1001)^(2))/(2003)

Let a=(1^(2))/(1)+(2^(2))/(3)+(3^(2))/(5)+....+((1001)^(2))/(2001),b=(1^(2))/(3)+(2^(2))/(5)+(3^(2))/(7)+....+((1001)^(2))/(2003) The closest of a-b is