Home
Class 14
MATHS
[(1-1/3)(1-1/4)(1-1/5)(1-1/6)....(1-1/99...

`[(1-1/3)(1-1/4)(1-1/5)(1-1/6)....(1-1/99)(1-1/100)]=?`

A

`2/99`

B

`1/25`

C

`1/50`

D

`1/100`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \([(1 - \frac{1}{3})(1 - \frac{1}{4})(1 - \frac{1}{5})(1 - \frac{1}{6}) \ldots (1 - \frac{1}{99})(1 - \frac{1}{100})]\), we can simplify each term step by step. ### Step-by-Step Solution: 1. **Rewrite Each Term**: Each term in the product can be rewritten as: \[ 1 - \frac{1}{n} = \frac{n-1}{n} \] So we can rewrite the entire expression: \[ (1 - \frac{1}{3})(1 - \frac{1}{4})(1 - \frac{1}{5}) \ldots (1 - \frac{1}{100}) = \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} \cdots \frac{99}{100} \] 2. **Form the Product**: The product can be expressed as: \[ \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} \cdots \frac{99}{100} \] Notice that in this product, all the intermediate terms will cancel out. 3. **Canceling Terms**: When we multiply these fractions, we can see that: - The \(3\) in the numerator of \(\frac{2}{3}\) cancels with the \(3\) in the denominator of \(\frac{3}{4}\). - The \(4\) in the numerator of \(\frac{3}{4}\) cancels with the \(4\) in the denominator of \(\frac{4}{5}\). - This pattern continues all the way up to: - The \(99\) in the numerator of \(\frac{98}{99}\) cancels with the \(99\) in the denominator of \(\frac{99}{100}\). Therefore, we are left with: \[ \frac{2}{100} \] 4. **Simplify the Result**: Now, simplify \(\frac{2}{100}\): \[ \frac{2}{100} = \frac{1}{50} \] ### Final Answer: Thus, the value of the expression is: \[ \frac{1}{50} \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

simplified value of (1-1/3)(1-1/4)(1-1/5)......(1-1/99 )(1-1/100) is

The simplified value of (1-1/3) (1- 1/4) (1-1/5) …(1-1/(99)) (1- (1)/(100)) is

(1-(1)/(2))(1-(1)/(3))(1-(1)/(4))(1-(1)/(5)).......(1-(1)/(m))=?

(1-(1)/(3))(1-(1)/(4))(1-(1)/(5))(1-(1)/(6))dots(1-(1)/(n))

If (1+1/2)(1+1/4)(1+1/6)(1+1/8)(1-1/3)(1-1/5)(1-1/7)=1+1/x ,then what is the value, of x? यदि (1+1/2)(1+1/4)(1+1/6)(1+1/8)(1-1/3)(1-1/5)(1-1/7)-1+1/x हो, तो x का मान क्या है?

prove that (1)/(2)-(1)/(3)+(1)/(4)-(1)/(5)++(1)/(98)-(1)/(99)+(1)/(100)>(1)/(5)

[(1)/(1*2)+(1)/(2*3)+(1)/(3*4)+....+(1)/(99*100)] =?

Find the value of (1-(1)/(3))(1-(1)/(4))(1-(1)/(5))1-(1)/(100)

The simplification of (1-(1)/(2)) ( 1- (1)/(3)) ( 1-(1)/(4))...(1-(1)/(100)) results in :

MOTHERS-NUMBER SYSTEM-O
  1. Which of the following order of the fractions is in descending form?

    Text Solution

    |

  2. The simplification of (0.bar1)^2{1-9(0.1bar6)^2} is

    Text Solution

    |

  3. [(1-1/3)(1-1/4)(1-1/5)(1-1/6)....(1-1/99)(1-1/100)]=?

    Text Solution

    |

  4. (1-1/3)(1-1/4)(1-1/5)…(1-1/n) equals:

    Text Solution

    |

  5. If 1^2+2^2+3^2+.....+x^2=((x)(x+1)(2x+1))/6, then the value of 1^2+3^2...

    Text Solution

    |

  6. The value 5/(2^2. 3^2)+7/(3^2 .4^2)+9/(4^2. 5^2)+11/(5^2. 6^2)+13/(6^2...

    Text Solution

    |

  7. Find the sum of 1/9+1/6+1/12+1/20+1/30+1/42+1/56+1/72

    Text Solution

    |

  8. 1/3+1/15+1/35+1/63+1/99+1/143=?

    Text Solution

    |

  9. Find the sum of first five terms in the sequence 1/(1xx4)+1/(4xx7)+1...

    Text Solution

    |

  10. The value of (1+(1)/(2)) (1+(1)/(3))(1+(1)/(4))....(1+(1)/(120)) is

    Text Solution

    |

  11. The value of (5.42x5.42+5.42xx24)/(32.71xx32.71-27.29xx27.29)div(6.54x...

    Text Solution

    |

  12. The value of [(1xx3xx9+2xx6xx18+3xx9xx27+.....)/(1xx5xx25+2xx10xx50+3x...

    Text Solution

    |

  13. The simplification of (1.bar3xx1.bar3xx1.bar3-1)/(1.bar3xx1.bar3+1.bar...

    Text Solution

    |

  14. 156.25 div 25 div 5 = ?

    Text Solution

    |

  15. 2100 div? div 84 = 1

    Text Solution

    |

  16. ((1.2.4+2.4.8+3.6.12+.....)/(1.3.9+2.6.18+3.9.27+.....))^(1//3)=?

    Text Solution

    |

  17. 1+1/10+2/(10^2)+2/(10^3)+2/(10^4)+....?

    Text Solution

    |

  18. Find tHe correct value upto 5 places of decimal of 1-1/20+1/(20^2)-1/(...

    Text Solution

    |

  19. If 47.2506 = 4A + 7/B+2C+5/D+6E then value of 5A + 3B + 6C + D + 3E is

    Text Solution

    |

  20. (1-1/(2^2))(1-1/(3^2))......(1-1/(9^2))(1-1/(10^2))=?

    Text Solution

    |