Home
Class 14
MATHS
((1.2.4+2.4.8+3.6.12+.....)/(1.3.9+2.6.1...

`((1.2.4+2.4.8+3.6.12+.....)/(1.3.9+2.6.18+3.9.27+.....))^(1//3)=?`

A

`1/3`

B

`2/3`

C

`3/4`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \left( \frac{1 \cdot 2 \cdot 4 + 2 \cdot 4 \cdot 8 + 3 \cdot 6 \cdot 12 + \ldots}{1 \cdot 3 \cdot 9 + 2 \cdot 6 \cdot 18 + 3 \cdot 9 \cdot 27 + \ldots} \right)^{\frac{1}{3}} \] ### Step 1: Analyze the Numerator The numerator is: \[ 1 \cdot 2 \cdot 4 + 2 \cdot 4 \cdot 8 + 3 \cdot 6 \cdot 12 + \ldots \] We can factor out common terms. Notice that: - The first term \(1 \cdot 2 \cdot 4\) can be written as \(1 \cdot 2 \cdot 4\). - The second term \(2 \cdot 4 \cdot 8\) can be factored as \(2 \cdot 4 \cdot (2 \cdot 4)\). - The third term \(3 \cdot 6 \cdot 12\) can be factored as \(3 \cdot 6 \cdot (2 \cdot 6)\). We can factor out \(4\) from the first term, \(8\) from the second term, and \(12\) from the third term. This gives us: \[ = 4(1 + 2 \cdot 2 + 3 \cdot 2 + \ldots) \] ### Step 2: Identify the Pattern in the Numerator The series \(1 + 2 \cdot 2 + 3 \cdot 2 + \ldots\) can be expressed as: \[ = 1 + 2^2 + 3^2 + \ldots \] This is an infinite series that can be summed up. ### Step 3: Analyze the Denominator The denominator is: \[ 1 \cdot 3 \cdot 9 + 2 \cdot 6 \cdot 18 + 3 \cdot 9 \cdot 27 + \ldots \] Similar to the numerator, we can factor out common terms. Notice that: - The first term \(1 \cdot 3 \cdot 9\) can be written as \(1 \cdot 3 \cdot 9\). - The second term \(2 \cdot 6 \cdot 18\) can be factored as \(2 \cdot 6 \cdot (3 \cdot 6)\). - The third term \(3 \cdot 9 \cdot 27\) can be factored as \(3 \cdot 9 \cdot (3 \cdot 9)\). This gives us: \[ = 9(1 + 2 \cdot 2 + 3 \cdot 3 + \ldots) \] ### Step 4: Identify the Pattern in the Denominator The series \(1 + 2 \cdot 2 + 3 \cdot 3 + \ldots\) can also be expressed as: \[ = 1 + 2^2 + 3^2 + \ldots \] ### Step 5: Form the Ratio Now we can form the ratio: \[ \frac{4(1 + 2^2 + 3^2 + \ldots)}{9(1 + 2^2 + 3^2 + \ldots)} \] The series cancels out, giving us: \[ \frac{4}{9} \] ### Step 6: Apply the Power Now we apply the power of \(\frac{1}{3}\): \[ \left(\frac{4}{9}\right)^{\frac{1}{3}} = \frac{4^{\frac{1}{3}}}{9^{\frac{1}{3}}} \] ### Step 7: Simplify This simplifies to: \[ \frac{2}{3} \] Thus, the final answer is: \[ \frac{2}{3} \] ### Final Answer \(\frac{2}{3}\)
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

Solve the followings : The value of the expression ((0.3)^(1//3).(1/27)^(1//4) . (9)^(1//6).(0.81)^(2//3))/((0.9)^(2//3) . (3)^(-1//2) . (1/3)^(-2). (243)^(-1//4)) is :

What is the median of the numbers 4.6, 0, 9.3, -4.8, 7.6,2.3,12.7,3.5,8.2,6.1,3.9,5.2?

The LCM of 3.6, 1.2 and 4.8 is

The LCM of 3.6, 1.2 and 4.8 is