Home
Class 14
MATHS
1+1/10+2/(10^2)+2/(10^3)+2/(10^4)+....?...

`1+1/10+2/(10^2)+2/(10^3)+2/(10^4)+....?`

A

`1.1bar2`

B

0.121

C

1.21

D

`1.bar(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \( S = 1 + \frac{1}{10} + \frac{2}{10^2} + \frac{2}{10^3} + \frac{2}{10^4} + \ldots \), we can break it down into manageable parts. ### Step-by-Step Solution 1. **Identify the Series**: The series can be rewritten as: \[ S = 1 + \frac{1}{10} + \sum_{n=2}^{\infty} \frac{2}{10^n} \] 2. **Calculate the First Two Terms**: The first two terms of the series are: \[ 1 + \frac{1}{10} = 1.1 \] 3. **Identify the Infinite Series**: The remaining part of the series is: \[ \sum_{n=2}^{\infty} \frac{2}{10^n} \] This is a geometric series where the first term \( a = \frac{2}{10^2} = \frac{2}{100} = 0.02 \) and the common ratio \( r = \frac{1}{10} \). 4. **Sum the Infinite Series**: The sum of an infinite geometric series is given by the formula: \[ S = \frac{a}{1 - r} \] Substituting the values: \[ S = \frac{0.02}{1 - \frac{1}{10}} = \frac{0.02}{\frac{9}{10}} = 0.02 \times \frac{10}{9} = \frac{0.2}{9} \approx 0.0222\ldots \] 5. **Combine the Results**: Now we add this sum to the first two terms: \[ S = 1.1 + 0.0222\ldots \approx 1.1222\ldots \] 6. **Final Result**: The final result can be expressed as: \[ S \approx 1.12\overline{2} \] This indicates that the digit '2' repeats infinitely. ### Conclusion The value of the series is approximately \( 1.12\overline{2} \), which corresponds to option 1 in the given choices.
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

(7) / (5) (1+ (1) / (10 ^ (2)) + (1.3) / (1.2) (. 1) / (10 ^ (4)) + .... oo) =

The sum of infinite series (1)/(10)+(2)/(10^(2))+(3)/(10^(3))+...+(n)/((10)^(n)) is

If a=underset("55 times")ubrace("111................1,") b=1+10+10^(2)+10^(3)+10^(4) and c=1+10^(5)+10^(10)+....+10^(50) , then

If (10)^(9)+2(11)^(1)(10)^(8)+3(11)^(2)(10)^(7)+..........+10(11)^(9)=k(10)^(9), then k is equal to:

If (10)^(9)+2(11)^(1)(10)^(8)+3(11)^(2)(10)^(7)+"........"+(10)(11)^(9)=k(10)^(9) , then k is equal to

The simplest value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+backslash+(1)/(9xx10) is (1)/(10) (b) (9)/(10) (c) 1 (d) 10