Home
Class 14
MATHS
1 + 2 + 3 + .......... + 49 + 50 + 49 + ...

1 + 2 + 3 + .......... + 49 + 50 + 49 + 48 + ........ + 3 + 2 + 1 is equal to.

A

1250

B

2500

C

2525

D

5000

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 1 + 2 + 3 + \ldots + 49 + 50 + 49 + 48 + \ldots + 3 + 2 + 1 \), we can break it down into two parts: the increasing sequence from 1 to 50 and the decreasing sequence from 49 back to 1. ### Step 1: Calculate the sum of the first part (1 to 50) The sum of the first \( n \) natural numbers can be calculated using the formula: \[ S_n = \frac{n(n + 1)}{2} \] For our case, \( n = 50 \): \[ S_{50} = \frac{50(50 + 1)}{2} = \frac{50 \times 51}{2} = \frac{2550}{2} = 1275 \] ### Step 2: Calculate the sum of the second part (49 to 1) The second part is the sum of the numbers from 1 to 49, which can also be calculated using the same formula: \[ S_{49} = \frac{49(49 + 1)}{2} = \frac{49 \times 50}{2} = \frac{2450}{2} = 1225 \] ### Step 3: Combine both sums Now, we need to add the two sums together: \[ \text{Total Sum} = S_{50} + S_{49} = 1275 + 1225 = 2500 \] ### Final Answer Thus, the total sum of the expression \( 1 + 2 + 3 + \ldots + 49 + 50 + 49 + 48 + \ldots + 3 + 2 + 1 \) is \( 2500 \).
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

Find the sum of 1 + 2 + 3 + …………… + 50 + 49 + ……… + 3 + 2 + 1

If 1+2+3+......+49=x, then 1^(3)+2^(3)+3^(3)+.........+49^(3) is equal to (A) X^(3)(B)X^(2)(C)X^(2)+X (D) none of these

The sum 1/(sin 45^@sin 46^@) + 1/(sin 47^@sin 48^@)+1/( sin 49^@ sin 50^@)+........+1/(sin 133^@sin 134^@) is equal to

The sum 1/(sin 45^@sin 46^@) + 1/(sin 47^@sin 48^@)+1/( sin 49^@ sin 50^@)+........+1/(sin 133^@sin 134^@) is equal to

The additive inverse of S, where S = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + …. + 49 - 50 is

The additive inverse of S, where S =1 - 2 + 3 -4 + 5 -6 + 7 - 8 + ...+ 49 - 50 is