Home
Class 14
MATHS
(11^3 + 12^3 + 13^3 + ...... + 30^3) = ?...

`(11^3 + 12^3 + 13^3 + ...... + 30^3) = ?`

A

231200

B

223100

C

213020

D

213200

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum of cubes from \(11^3\) to \(30^3\), we can use the formula for the sum of cubes from \(1^3\) to \(n^3\), which is given by: \[ \text{Sum} = \left(\frac{n(n+1)}{2}\right)^2 \] ### Step-by-Step Solution: 1. **Calculate the sum of cubes from \(1^3\) to \(30^3\)**: - Here, \(n = 30\). - Using the formula: \[ \text{Sum}_{1 \text{ to } 30} = \left(\frac{30 \times 31}{2}\right)^2 \] - Calculate \(30 \times 31 = 930\). - Now, calculate \(\frac{930}{2} = 465\). - Finally, calculate \(465^2\): \[ 465^2 = 216225 \] 2. **Calculate the sum of cubes from \(1^3\) to \(10^3\)**: - Here, \(n = 10\). - Using the formula: \[ \text{Sum}_{1 \text{ to } 10} = \left(\frac{10 \times 11}{2}\right)^2 \] - Calculate \(10 \times 11 = 110\). - Now, calculate \(\frac{110}{2} = 55\). - Finally, calculate \(55^2\): \[ 55^2 = 3025 \] 3. **Subtract the sum of cubes from \(1^3\) to \(10^3\) from the sum of cubes from \(1^3\) to \(30^3\)**: \[ \text{Sum}_{11 \text{ to } 30} = \text{Sum}_{1 \text{ to } 30} - \text{Sum}_{1 \text{ to } 10} \] \[ \text{Sum}_{11 \text{ to } 30} = 216225 - 3025 \] - Perform the subtraction: \[ 216225 - 3025 = 213200 \] Thus, the sum of cubes from \(11^3\) to \(30^3\) is \(213200\). ### Final Answer: \[ (11^3 + 12^3 + 13^3 + \ldots + 30^3) = 213200 \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

11^(3)+12^(3)+13^(3)+………….+20^(3) is

Find the value of 11^3 + 12^3 +...+ 20^3 .

11^(3)+12^(3)+13^(3)+ …………………. +20^(3) is

Let A ={9, 10, 11, 12, 13) and f: A-> N be defined by f(n)-highest prime factor of n, 33. 1) (13) 3) (11, 13 13, 5, 11, 13 4) [2, 3, 5, 11)

Check if lines with direction-cosines : lt (12)/(13) , - (3)/(13) , - (4)/(13) gt , lt (4)/(13) , (12)/(13), (3)/(13) gt , lt (3)/(13) , (4)/(13) , (12)/(13) gt are mutually perpendicular .

{:(2x - 3y = - 13),(3x - 2y = - 12):}

11^(3)+12^(3)+...+20^(3) is divisible by