Home
Class 14
MATHS
2.bar(43)+3.bar(62)+3.bar(18)=?...

`2.bar(43)+3.bar(62)+3.bar(18)=?`

A

`8.bar(24)`

B

`9.bar(24)`

C

`8.bar(23)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2.\overline{43} + 3.\overline{62} + 3.\overline{18}\), we will first convert each repeating decimal into a fraction. ### Step-by-Step Solution: 1. **Convert \(2.\overline{43}\) to a fraction:** - Let \(x = 2.\overline{43}\). - Multiply by 100 (since "43" has 2 digits): \(100x = 243.\overline{43}\). - Subtract the original equation from this: \[ 100x - x = 243.\overline{43} - 2.\overline{43} \] \[ 99x = 241 \] - Therefore, \(x = \frac{241}{99}\). - So, \(2.\overline{43} = 2 + \frac{241}{99} = \frac{198 + 241}{99} = \frac{439}{99}\). 2. **Convert \(3.\overline{62}\) to a fraction:** - Let \(y = 3.\overline{62}\). - Multiply by 100: \(100y = 362.\overline{62}\). - Subtract the original equation: \[ 100y - y = 362.\overline{62} - 3.\overline{62} \] \[ 99y = 359 \] - Therefore, \(y = \frac{359}{99}\). - So, \(3.\overline{62} = 3 + \frac{359}{99} = \frac{297 + 359}{99} = \frac{656}{99}\). 3. **Convert \(3.\overline{18}\) to a fraction:** - Let \(z = 3.\overline{18}\). - Multiply by 100: \(100z = 318.\overline{18}\). - Subtract the original equation: \[ 100z - z = 318.\overline{18} - 3.\overline{18} \] \[ 99z = 315 \] - Therefore, \(z = \frac{315}{99}\). - So, \(3.\overline{18} = 3 + \frac{315}{99} = \frac{297 + 315}{99} = \frac{612}{99}\). 4. **Now, add all three fractions:** \[ 2.\overline{43} + 3.\overline{62} + 3.\overline{18} = \frac{439}{99} + \frac{656}{99} + \frac{612}{99} \] - Combine the numerators: \[ = \frac{439 + 656 + 612}{99} = \frac{1707}{99} \] 5. **Simplify the fraction if possible:** - \(1707\) and \(99\) have a common factor of \(9\): \[ \frac{1707 \div 9}{99 \div 9} = \frac{189}{11} \] 6. **Convert back to a mixed number if needed:** - \(189 \div 11 = 17\) remainder \(2\), so: \[ \frac{189}{11} = 17 \frac{2}{11} \] ### Final Answer: \[ 2.\overline{43} + 3.\overline{62} + 3.\overline{18} = \frac{189}{11} \text{ or } 17 \frac{2}{11} \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

1.bar(5)+2.bar(6)+3.bar(7)=

Solve: 0.bar43-1.bar(76)+3.bar(12)

Evaluate 3.bar(2)-0.bar(16)

The point of intersection of the lines bar(r)timesbar(a)=bar(b)timesbar(a) and bar(r)timesbar(b)=bar(a)timesbar(b) is 1. bar(a)-bar(b) 2. bar(a)+bar(b) 3. 2bar(a)+3bar(b) 4. 3bar(a)-2bar(b)

The value of 0.bar(2)+0.bar(3) +0.bar(4)+0.bar(9) +0.bar(39) is

If bar(a)=2bar(i)-3bar(j)+6bar(k), bar(b)=-2bar(i)+2bar(j)-bar(k) and lambda=(the projection of bar(a) on bar(b))/( the projection of bar(b) on bar(a)) then the value of lambda is

If |bar(a)|=|bar(b)|=|bar(c)|=2 , and bar(a)*bar(b)=bar(b).bar(c)=bar(c)*bar(a)=2 then [bar(a) bar(b) bar(c)] = (1). 3sqrt(2) (2). 4sqrt(2) (3).32 (4).48

A parallelogram is constructed on 2bar(a)+3bar(b) and 3bar(a)-5bar(b), where ।bar(a)|=4 and |bar(b)|=5. If the angle between bar(a) and bar(b) is (pi)/(3), then the magnitude of the smaller diagonal is

If bar(a)=2bar(i)-3bar(j)+6bar(k) , bar(b)=-2bar(i)+2bar(j)-bar(k) and k =(the projection of bar(a) on bar(b)) /(the projection of bar(b) on bar(a)) then the value of 3k=

bar (a) = 2bar (i) + 3bar (j) -bar (k), bar (b) = bar (i) + 2bar (j) -4bar (k), bar (c) = bar (i) + bar (j) + bar (k), bar (d) = bar (i) -bar (j) -bar (k) then