Home
Class 14
MATHS
2.6bar1+9.2bar4+10.6bar3=?...

`2.6bar1+9.2bar4+10.6bar3=?`

A

`22.bar(48)`

B

`21.bar(48)`

C

`22.4bar(8)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(2.6\overline{1} + 9.2\overline{4} + 10.6\overline{3}\), we need to convert each repeating decimal into a fraction or a non-repeating decimal. ### Step 1: Convert \(2.6\overline{1}\) to a fraction Let \(x = 2.6\overline{1}\). Multiply by 10 to shift the decimal: \[ 10x = 26.1\overline{1} \] Now, subtract the original \(x\) from this equation: \[ 10x - x = 26.1\overline{1} - 2.6\overline{1} \] \[ 9x = 23.5 \] \[ x = \frac{23.5}{9} \] To convert \(23.5\) to a fraction: \[ 23.5 = \frac{235}{10} = \frac{47}{2} \] So, \[ x = \frac{47/2}{9} = \frac{47}{18} \] ### Step 2: Convert \(9.2\overline{4}\) to a fraction Let \(y = 9.2\overline{4}\). Multiply by 10: \[ 10y = 92.4\overline{4} \] Subtract the original \(y\): \[ 10y - y = 92.4\overline{4} - 9.2\overline{4} \] \[ 9y = 83.2 \] \[ y = \frac{83.2}{9} \] Convert \(83.2\) to a fraction: \[ 83.2 = \frac{832}{10} = \frac{416}{5} \] So, \[ y = \frac{416/5}{9} = \frac{416}{45} \] ### Step 3: Convert \(10.6\overline{3}\) to a fraction Let \(z = 10.6\overline{3}\). Multiply by 10: \[ 10z = 106.3\overline{3} \] Subtract the original \(z\): \[ 10z - z = 106.3\overline{3} - 10.6\overline{3} \] \[ 9z = 95.7 \] \[ z = \frac{95.7}{9} \] Convert \(95.7\) to a fraction: \[ 95.7 = \frac{957}{10} = \frac{9570}{100} \] So, \[ z = \frac{957/10}{9} = \frac{957}{90} \] ### Step 4: Add the fractions Now we have: \[ x = \frac{47}{18}, \quad y = \frac{416}{45}, \quad z = \frac{957}{90} \] To add these fractions, we need a common denominator. The least common multiple of \(18\), \(45\), and \(90\) is \(90\). Convert each fraction: \[ x = \frac{47 \times 5}{90} = \frac{235}{90} \] \[ y = \frac{416 \times 2}{90} = \frac{832}{90} \] \[ z = \frac{957}{90} \] Now, add them: \[ \frac{235}{90} + \frac{832}{90} + \frac{957}{90} = \frac{235 + 832 + 957}{90} = \frac{2024}{90} \] ### Step 5: Simplify the fraction Now simplify \(\frac{2024}{90}\): \[ 2024 \div 2 = 1012, \quad 90 \div 2 = 45 \] So, \[ \frac{2024}{90} = \frac{1012}{45} \] ### Step 6: Convert to decimal Now, convert \(\frac{1012}{45}\) to a decimal: \[ 1012 \div 45 \approx 22.48 \] Thus, the final answer is: \[ \boxed{22.48\overline{8}} \]
Promotional Banner

Topper's Solved these Questions

  • LCM & HCF

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|200 Videos
  • PARTNERSHIP

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION |51 Videos

Similar Questions

Explore conceptually related problems

The value of 0.bar(2)+0.bar(3) +0.bar(4)+0.bar(9) +0.bar(39) is

The value of 0.bar2+0.bar3+0.bar4+0.bar9+0.bar(39) is

The value of (2. bar 4xx0. bar 6 xx3xx0.1 bar 6)xx[0. bar 27xx(0.8 bar3 div 0.1 bar6)] is: (2. bar 4xx0. bar 6 xx3xx0.1 bar 6)xx[0. bar 27xx(0.8 bar3 div 0.1 bar6)] का मान ज्ञात कीजिए

The value of 0.5 bar 6 -0.7 bar23+0.3 bar 9xx 0. bar 7 is : 0.5 bar 6 -0.7 bar23+0.3 bar 9xx 0. bar 7 का मान है :

The value of 0.5bar6 -0.7bar(23)+0.3bar9 xx 0.bar7 is :

The value of 0.bar(3) + 0.bar(6) + 0. bar( 7 ) + 0. bar( 8 ) in fraction will be

1.bar(5)+2.bar(6)+3.bar(7)=

What is the value of 2.bar6 - 1. bar9 ?