Home
Class 14
MATHS
If a + b = 1, then 'a^(4) + b^(4) - a^(3...

If a + b = 1, then 'a^(4) + b^(4) - a^(3) - b^(3) – 2a ^(2)b^(2)' + ab is equal to

A

1

B

2

C

4

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression \( a^4 + b^4 - a^3 - b^3 - 2a^2b^2 + ab \) given that \( a + b = 1 \). ### Step-by-Step Solution: 1. **Start with the given expression:** \[ a^4 + b^4 - a^3 - b^3 - 2a^2b^2 + ab \] 2. **Use the identity for \( a^4 + b^4 \):** The identity states that: \[ a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2 \] We can express \( a^2 + b^2 \) using \( (a + b)^2 \): \[ a^2 + b^2 = (a + b)^2 - 2ab = 1^2 - 2ab = 1 - 2ab \] So, \[ a^4 + b^4 = (1 - 2ab)^2 - 2a^2b^2 \] 3. **Substitute \( a^4 + b^4 \) back into the expression:** \[ (1 - 2ab)^2 - 2a^2b^2 - a^3 - b^3 + ab \] 4. **Use the identity for \( a^3 + b^3 \):** The identity states that: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) = 1((1 - 2ab) - ab) = 1 - 3ab \] Thus, \[ a^3 + b^3 = 1 - 3ab \] 5. **Substituting \( a^3 + b^3 \) into the expression:** \[ (1 - 2ab)^2 - 2a^2b^2 - (1 - 3ab) + ab \] 6. **Simplify the expression:** \[ (1 - 2ab)^2 - 2a^2b^2 - 1 + 3ab + ab \] \[ = (1 - 2ab)^2 - 2a^2b^2 + 4ab - 1 \] 7. **Expand \( (1 - 2ab)^2 \):** \[ = 1 - 4ab + 4a^2b^2 - 2a^2b^2 + 4ab - 1 \] \[ = 1 - 1 + (4a^2b^2 - 2a^2b^2) + 0 \] \[ = 2a^2b^2 - 2a^2b^2 = 0 \] 8. **Final Result:** \[ a^4 + b^4 - a^3 - b^3 - 2a^2b^2 + ab = 0 \] ### Conclusion: The value of the expression is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If a^(3) - b^(3)= 210 and a-b=5 , then (a+b)^(2)-ab is equal to :

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If a + b = 1, then 'a^(4) + b^(4) - a^(3) - b^(3) – 2a ^(2)b^(2)' + ab...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |