Home
Class 14
MATHS
If x ^(2) + (1)/(x ^(2)) = 98 ( x gt 0),...

If `x ^(2) + (1)/(x ^(2)) = 98 ( x gt 0),` then the valu eof `x ^(3) + (1)/( x ^(3))` is.

A

970

B

1030

C

`-970`

D

`-1030`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: 1. **Given**: \[ x^2 + \frac{1}{x^2} = 98 \] 2. **Step 1**: We can relate \(x^2 + \frac{1}{x^2}\) to \(x + \frac{1}{x}\) using the identity: \[ x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2 \] Let \(y = x + \frac{1}{x}\). Then we have: \[ x^2 + \frac{1}{x^2} = y^2 - 2 \] 3. **Step 2**: Substitute the value of \(x^2 + \frac{1}{x^2}\) into the equation: \[ y^2 - 2 = 98 \] 4. **Step 3**: Solve for \(y^2\): \[ y^2 = 98 + 2 = 100 \] 5. **Step 4**: Take the square root of both sides: \[ y = \sqrt{100} = 10 \] (Since \(x > 0\), we take the positive root.) 6. **Step 5**: Now, we need to find \(x^3 + \frac{1}{x^3}\). We can use the identity: \[ x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)\left(x^2 - 1 + \frac{1}{x^2}\right) \] We already know \(x + \frac{1}{x} = y = 10\) and we can find \(x^2 + \frac{1}{x^2} = 98\). 7. **Step 6**: Substitute into the identity: \[ x^3 + \frac{1}{x^3} = y \left( x^2 + \frac{1}{x^2} - 1 \right) \] \[ = 10 \left( 98 - 1 \right) = 10 \times 97 = 970 \] 8. **Final Answer**: \[ x^3 + \frac{1}{x^3} = 970 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x ^(2) - 3 sqrt2 x +1 = 0, then the value of x ^(3) + (1)/(x ^(3)) is :

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If x ^(2) + (1)/(x ^(2)) = 98 ( x gt 0), then the valu eof x ^(3) + ...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |